Biblio
Cyber threat information can be utilized to investigate incidents by leveraging threat-related knowledge from prior incidents with digital forensic techniques and tools. However, the actionability of cyber threat information in digital forensics has not yet been evaluated. Such evaluation is important to ascertain that cyber threat information is as actionable as it can be and to reveal areas of improvement. In this study, a dataset of cyber threat information products was created from well-known cyber threat information sources and its actionability in digital forensics was evaluated. The evaluation results showed a high level of cyber threat information actionability that still needs enhancements in supporting some widely present types of attacks. To further enhance the provision of actionable cyber threat information, the development of the new TREVItoSTIX Autopsy module is presented. TREVItoSTIX allows the expression of the findings of an incident investigation in the structured threat information expression format in order to be easily shared and reused in future digital forensics investigations.
Phishing sends malicious links or attachments through emails that can perform various functions, including capturing the victim's login credentials or account information. These emails harm the victims, cause money loss, and identity theft. In this paper, we contribute to solving the phishing problem by developing an extension for the Google Chrome web browser. In the development of this feature, we used JavaScript PL. To be able to identify and prevent the fishing attack, a combination of Blacklisting and semantic analysis methods was used. Furthermore, a database for phishing sites is generated, and the text, links, images, and other data on-site are analyzed for pattern recognition. Finally, our proposed solution was tested and compared to existing approaches. The results validate that our proposed method is capable of handling the phishing issue substantially.
Phishing attacks are the most common form of attacks that can happen over the internet. This method involves attackers attempting to collect data of a user without his/her consent through emails, URLs, and any other link that leads to a deceptive page where a user is persuaded to commit specific actions that can lead to the successful completion of an attack. These attacks can allow an attacker to collect vital information of the user that can often allow the attacker to impersonate the victim and get things done that only the victim should have been able to do, such as carry out transactions, or message someone else, or simply accessing the victim's data. Many studies have been carried out to discuss possible approaches to prevent such attacks. This research work includes three machine learning algorithms to predict any websites' phishing status. In the experimentation these models are trained using URL based features and attempted to prevent Zero-Day attacks by using proposed software proposal that differentiates the legitimate websites and phishing websites by analyzing the website's URL. From observations, the random forest classifier performed with a precision of 97%, a recall 99%, and F1 Score is 97%. Proposed model is fast and efficient as it only works based on the URL and it does not use other resources for analysis, as was the case for past studies.
Internet is the most widely used technology in the current era of information technology and it is embedded in daily life activities. Due to its extensive use in everyday life, it has many applications such as social media (Face book, WhatsApp, messenger etc.,) and other online applications such as online businesses, e-counseling, advertisement on websites, e-banking, e-hunting websites, e-doctor appointment and e-doctor opinion. The above mentioned applications of internet technology makes things very easy and accessible for human being in limited time, however, this technology is vulnerable to various security threats. A vital and severe threat associated with this technology or a particular application is “Phishing attack” which is used by attacker to usurp the network security. Phishing attacks includes fake E-mails, fake websites, fake applications which are used to steal their credentials or usurp their security. In this paper, a detailed overview of various phishing attacks, specifically their background knowledge, and solutions proposed in literature to address these issues using various techniques such as anti-phishing, honey pots and firewalls etc. Moreover, installation of intrusion detection systems (IDS) and intrusion detection and prevention system (IPS) in the networks to allow the authentic traffic in an operational network. In this work, we have conducted end use awareness campaign to educate and train the employs in order to minimize the occurrence probability of these attacks. The result analysis observed for this survey was quite excellent by means of its effectiveness to address the aforementioned issues.
The search for alternative delivery modes to teaching has been one of the pressing concerns of numerous educational institutions. One key innovation to improve teaching and learning is e-learning which has undergone enormous improvements. From its focus on text-based environment, it has evolved into Virtual Learning Environments (VLEs) which provide more stimulating and immersive experiences among learners and educators. An example of VLEs is the virtual world which is an emerging educational platform among universities worldwide. One very interesting topic that can be taught using the virtual world is cybersecurity. Simulating cybersecurity in the virtual world may give a realistic experience to students which can be hardly achieved by classroom teaching. To date, there are quite a number of studies focused on cybersecurity awareness and cybersecurity behavior. But none has focused looking into the effect of digital simulation in the virtual world, as a new educational platform, in the cybersecurity attitude of the students. It is in this regard that this study has been conducted by designing simulation in the virtual world lessons that teaches the five aspects of cybersecurity namely; malware, phishing, social engineering, password usage and online scam, which are the most common cybersecurity issues. The study sought to examine the effect of this digital simulation design in the cybersecurity knowledge and attitude of the students. The result of the study ascertains that students exposed under simulation in the virtual world have a greater positive change in cybersecurity knowledge and attitude than their counterparts.
In the era of the ever-growing number of smart devices, fraudulent practices through Phishing Websites have become an increasingly severe threat to modern computers and internet security. These websites are designed to steal the personal information from the user and spread over the internet without the knowledge of the user using the system. These websites give a false impression of genuinity to the user by mirroring the real trusted web pages which then leads to the loss of important credentials of the user. So, Detection of such fraudulent websites is an essence and the need of the hour. In this paper, various classifiers have been considered and were found that ensemble classifiers predict to utmost efficiency. The idea behind was whether a combined classifier model performs better than a single classifier model leading to a better efficiency and accuracy. In this paper, for experimentation, three Meta Classifiers, namely, AdaBoostM1, Stacking, and Bagging have been taken into consideration for performance comparison. It is found that Meta Classifier built by combining of simple classifier(s) outperform the simple classifier's performance.
Phishing attacks have reached record volumes in recent years. Simultaneously, modern phishing websites are growing in sophistication by employing diverse cloaking techniques to avoid detection by security infrastructure. In this paper, we present PhishFarm: a scalable framework for methodically testing the resilience of anti-phishing entities and browser blacklists to attackers' evasion efforts. We use PhishFarm to deploy 2,380 live phishing sites (on new, unique, and previously-unseen .com domains) each using one of six different HTTP request filters based on real phishing kits. We reported subsets of these sites to 10 distinct anti-phishing entities and measured both the occurrence and timeliness of native blacklisting in major web browsers to gauge the effectiveness of protection ultimately extended to victim users and organizations. Our experiments revealed shortcomings in current infrastructure, which allows some phishing sites to go unnoticed by the security community while remaining accessible to victims. We found that simple cloaking techniques representative of real-world attacks- including those based on geolocation, device type, or JavaScript- were effective in reducing the likelihood of blacklisting by over 55% on average. We also discovered that blacklisting did not function as intended in popular mobile browsers (Chrome, Safari, and Firefox), which left users of these browsers particularly vulnerable to phishing attacks. Following disclosure of our findings, anti-phishing entities are now better able to detect and mitigate several cloaking techniques (including those that target mobile users), and blacklisting has also become more consistent between desktop and mobile platforms- but work remains to be done by anti-phishing entities to ensure users are adequately protected. Our PhishFarm framework is designed for continuous monitoring of the ecosystem and can be extended to test future state-of-the-art evasion techniques used by malicious websites.