Biblio
There is growing evidence that spear phishing campaigns are increasingly pervasive, sophisticated, and remain the starting points of more advanced attacks. Current campaign identification and attribution process heavily relies on manual efforts and is inefficient in gathering intelligence in a timely manner. It is ideal that we can automatically attribute spear phishing emails to known campaigns and achieve early detection of new campaigns using limited labelled emails as the seeds. In this paper, we introduce four categories of email profiling features that capture various characteristics of spear phishing emails. Building on these features, we implement and evaluate an affinity graph based semi-supervised learning model for campaign attribution and detection. We demonstrate that our system, using only 25 labelled emails, achieves 0.9 F1 score with a 0.01 false positive rate in known campaign attribution, and is able to detect previously unknown spear phishing campaigns, achieving 100% 'darkmoon', over 97% of 'samkams' and 91% of 'bisrala' campaign detection using 246 labelled emails in our experiments.
Nowadays, phishing is one of the most usual web threats with regards to the significant growth of the World Wide Web in volume over time. Phishing attackers always use new (zero-day) and sophisticated techniques to deceive online customers. Hence, it is necessary that the anti-phishing system be real-time and fast and also leverages from an intelligent phishing detection solution. Here, we develop a reliable detection system which can adaptively match the changing environment and phishing websites. Our method is an online and feature-rich machine learning technique to discriminate the phishing and legitimate websites. Since the proposed approach extracts different types of discriminative features from URLs and webpages source code, it is an entirely client-side solution and does not require any service from the third-party. The experimental results highlight the robustness and competitiveness of our anti-phishing system to distinguish the phishing and legitimate websites.
A mail spoofing attack is a harmful activity that modifies the source of the mail and trick users into believing that the message originated from a trusted sender whereas the actual sender is the attacker. Based on the previous work, this paper analyzes the transmission process of an email. Our work identifies new attacks suitable for bypassing SPF, DMARC, and Mail User Agent’s protection mechanisms. We can forge much more realistic emails to penetrate the famous mail service provider like Tencent by conducting the attack. By completing a large-scale experiment on these well-known mail service providers, we find some of them are affected by the related vulnerabilities. Some of the bypass methods are different from previous work. Our work found that this potential security problem can only be effectively protected when all email service providers have a standard view of security and can configure appropriate security policies for each email delivery node. In addition, we also propose a mitigate method to defend against these attacks. We hope our work can draw the attention of email service providers and users and effectively reduce the potential risk of phishing email attacks on them.
Phishing is referred as an attempt to obtain sensitive information, such as usernames, passwords, and credit card details (and, indirectly, money), for malicious reasons, by disguising as a trustworthy entity in an electronic communication [1]. Hackers and malicious users, often use Emails as phishing tools to obtain the personal data of legitimate users, by sending Emails with authentic identities, legitimate content, but also with malicious URL, which help them to steal consumer's data. The high dimensional data in phishing context contains large number of redundant features that significantly elevate the classification error. Additionally, the time required to perform classification increases with the number of features. So extracting complex Features from phishing Emails requires us to determine which Features are relevant and fundamental in phishing detection. The dominant approaches in phishing are based on machine learning techniques; these rely on manual feature engineering, which is time consuming. On the other hand, deep learning is a promising alternative to traditional methods. The main idea of deep learning techniques is to learn complex features extracted from data with minimum external contribution [2]. In this paper, we propose new phishing detection and prevention approach, based first on our previous spam filter [3] to classify textual content of Email. Secondly it's based on Autoencoder and on Denoising Autoencoder (DAE), to extract relevant and robust features set of URL (to which the website is actually directed), therefore the features space could be reduced considerably, and thus decreasing the phishing detection time.
Phishing is a technique aimed to imitate an official websites of any company such as banks, institutes, etc. The purpose of phishing is to theft private and sensitive credentials of users such as password, username or PIN. Phishing detection is a technique to deal with this kind of malicious activity. In this paper we propose a method able to discriminate between web pages aimed to perform phishing attacks and legitimate ones. We exploit state of the art machine learning algorithms in order to build models using indicators that are able to detect phishing activities.
The Security Behavior Intentions Scale (SeBIS) measures the computer security attitudes of end-users. Because intentions are a prerequisite for planned behavior, the scale could therefore be useful for predicting users' computer security behaviors. We performed three experiments to identify correlations between each of SeBIS's four sub-scales and relevant computer security behaviors. We found that testing high on the awareness sub-scale correlated with correctly identifying a phishing website; testing high on the passwords sub-scale correlated with creating passwords that could not be quickly cracked; testing high on the updating sub-scale correlated with applying software updates; and testing high on the securement sub-scale correlated with smartphone lock screen usage (e.g., PINs). Our results indicate that SeBIS predicts certain computer security behaviors and that it is a reliable and valid tool that should be used in future research.
Phishing attacks are prevalent and humans are central to this online identity theft attack, which aims to steal victims' sensitive and personal information such as username, password, and online banking details. There are many antiphishing tools developed to thwart against phishing attacks. Since humans are the weakest link in phishing, it is important to educate them to detect and avoid phishing attacks. One can argue self-efficacy is one of the most important determinants of individual's motivation in phishing threat avoidance behaviour, which has co-relation with knowledge. The proposed research endeavours on the user's self-efficacy in order to enhance the individual's phishing threat avoidance behaviour through their motivation. Using social cognitive theory, we explored that various knowledge attributes such as observational (vicarious) knowledge, heuristic knowledge and structural knowledge contributes immensely towards the individual's self-efficacy to enhance phishing threat prevention behaviour. A theoretical framework is then developed depicting the mechanism that links knowledge attributes, self-efficacy, threat avoidance motivation that leads to users' threat avoidance behaviour. Finally, a gaming prototype is designed incorporating the knowledge elements identified in this research that aimed to enhance individual's self-efficacy in phishing threat avoidance behaviour.
We are confronted with the threat from the theft of user-id / password information caused by phishing attacks. Now authentication by using the user-id and password is no longer safe. We can use the PKI-based authentication as a safer authentication mechanism. In our university, Japan Advanced Institute of Science and Technology (JAIST), we deployed On Demand Digital Certificate Issuing System for our users, and employ the PKI-based client certificates for log-on to web application, connecting to wireless network (including eduroam), using VPN service, and email sender signing. In addition, National In-stitute of Information (NII), which are providing common ICT infrastructure services for Japanese universities and institutes, started a service to issue client certificates in this year. So use of the electronic certificates will become more popular within a few years in Japan. However, there are not so enough cases deploying the electronic certificate based authentication in University infrastructure, we still has many tips and issues on operating this. In this paper, we introduce the use case of the electronic certificate in JAIST, the challenges and issues, and consider the future prospects.
In this work, we applied deep semantic analysis, and machine learning and deep learning techniques, to capture inherent characteristics of email text, and classify emails as phishing or non -phishing.
This article discusses how a system of Identification: Friend or Foe (IFF) can be implemented in email to make users less susceptible to phishing attacks.
Phishing continues to remain a lucrative market for cyber criminals, mostly because of the vulnerable human element. Through emails and spoofed-websites, phishers exploit almost any opportunity using major events, considerable financial awards, fake warnings and the trusted reputation of established organizations, as a basis to gain their victims' trust. For many years, humans have often been referred to as the `weakest link' towards protecting information. To gain their victims' trust, phishers continue to use sophisticated looking emails and spoofed websites to trick them, and rely on their victims' lack of knowledge, lax security behavior and organizations' inadequate security measures towards protecting itself and their clients. As such, phishing security controls and vulnerabilities can arguably be classified into three main elements namely human factors (H), organizational aspects (O) and technological controls (T). All three of these elements have the common feature of human involvement and as such, security gaps are inevitable. Each element also functions as both security control and security vulnerability. A holistic framework towards combatting phishing is required whereby the human feature in all three of these elements is enhanced by means of a security education, training and awareness programme. This paper discusses the educational factors required to form part of a holistic framework, addressing the HOT elements as well as the relationships between these elements towards combatting phishing. The development of this framework uses the principles of design science to ensure that it is developed with rigor. Furthermore, this paper reports on the verification of the framework.