Biblio
Filters: Keyword is fluid flow [Clear All Filters]
Machine Learning Computational Fluid Dynamics. 2021 Swedish Artificial Intelligence Society Workshop (SAIS). :1—4.
.
2021. Numerical simulation of fluid flow is a significant research concern during the design process of a machine component that experiences fluid-structure interaction (FSI). State-of-the-art in traditional computational fluid dynamics (CFD) has made CFD reach a relative perfection level during the last couple of decades. However, the accuracy of CFD is highly dependent on mesh size; therefore, the computational cost depends on resolving the minor feature. The computational complexity grows even further when there are multiple physics and scales involved making the approach time-consuming. In contrast, machine learning (ML) has shown a highly encouraging capacity to forecast solutions for partial differential equations. A trained neural network has offered to make accurate approximations instantaneously compared with conventional simulation procedures. This study presents transient fluid flow prediction past a fully immersed body as an integral part of the ML-CFD project. MLCFD is a hybrid approach that involves initialising the CFD simulation domain with a solution forecasted by an ML model to achieve fast convergence in traditional CDF. Initial results are highly encouraging, and the entire time-based series of fluid patterns past the immersed structure is forecasted using a deep learning algorithm. Prepared results show a strong agreement compared with fluid flow simulation performed utilising CFD.
Numerical Study of Acoustic Propagation Characteristics in the Multi-scale Seafloor Random Media. 2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP). :135–138.
.
2020. There is some uncertainty as to the applicability or accuracy of current theories for wave propagation in sediments. Numerical modelling of acoustic data has long been recognized to be a powerful method of understanding of complicated wave propagation and interaction. In this paper, we used the coupled two-dimensional PSM-BEM program to simulate the process of acoustic wave propagation in the seafloor with distributed multi-scale random media. The effects of fluid flow between the pores and the grains with multi-scale distribution were considered. The results show that the coupled PSM-BEM program can be directly applied to both high and low frequency seafloor acoustics. A given porous frame with the pore space saturated with fluid can greatly increase the magnitude of acoustic anisotropy. acoustic wave velocity dispersion and attenuation are significant over a frequency range which spans at least two orders of magnitude.