Visible to the public Biblio

Filters: Keyword is correlation theory  [Clear All Filters]
2021-02-15
Hemmati, A., Nasiri, H., Haeri, M. A., Ebadzadeh, M. M..  2020.  A Novel Correlation-Based CUR Matrix Decomposition Method. 2020 6th International Conference on Web Research (ICWR). :172–176.
Web data such as documents, images, and videos are examples of large matrices. To deal with such matrices, one may use matrix decomposition techniques. As such, CUR matrix decomposition is an important approximation technique for high-dimensional data. It approximates a data matrix by selecting a few of its rows and columns. However, a problem faced by most CUR decomposition matrix methods is that they ignore the correlation among columns (rows), which gives them lesser chance to be selected; even though, they might be appropriate candidates for basis vectors. In this paper, a novel CUR matrix decomposition method is proposed, in which calculation of the correlation, boosts the chance of selecting such columns (rows). Experimental results indicate that in comparison with other methods, this one has had higher accuracy in matrix approximation.
2020-12-21
Figueiredo, N. M., Rodríguez, M. C..  2020.  Trustworthiness in Sensor Networks A Reputation-Based Method for Weather Stations. 2020 International Conference on Omni-layer Intelligent Systems (COINS). :1–6.
Trustworthiness is a soft-security feature that evaluates the correct behavior of nodes in a network. More specifically, this feature tries to answer the following question: how much should we trust in a certain node? To determine the trustworthiness of a node, our approach focuses on two reputation indicators: the self-data trust, which evaluates the data generated by the node itself taking into account its historical data; and the peer-data trust, which utilizes the nearest nodes' data. In this paper, we show how these two indicators can be calculated using the Gaussian Overlap and Pearson correlation. This paper includes a validation of our trustworthiness approach using real data from unofficial and official weather stations in Portugal. This is a representative scenario of the current situation in many other areas, with different entities providing different kinds of data using autonomous sensors in a continuous way over the networks.
2015-05-05
Jialing Mo, Qiang He, Weiping Hu.  2014.  An adaptive threshold de-noising method based on EEMD. Signal Processing, Communications and Computing (ICSPCC), 2014 IEEE International Conference on. :209-214.

In view of the difficulty in selecting wavelet base and decomposition level for wavelet-based de-noising method, this paper proposes an adaptive de-noising method based on Ensemble Empirical Mode Decomposition (EEMD). The autocorrelation, cross-correlation method is used to adaptively find the signal-to-noise boundary layer of the EEMD in this method. Then the noise dominant layer is filtered directly and the signal dominant layer is threshold de-noised. Finally, the de-noising signal is reconstructed by each layer component which is de-noised. This method solves the problem of mode mixing in Empirical Mode Decomposition (EMD) by using EEMD and combines the advantage of wavelet threshold. In this paper, we focus on the analysis and verification of the correctness of the adaptive determination of the noise dominant layer. The simulation experiment results prove that this de-noising method is efficient and has good adaptability.