Visible to the public Biblio

Filters: Keyword is fully connected neural network  [Clear All Filters]
2022-05-19
Deng, Xiaolei, Zhang, Chunrui, Duan, Yubing, Xie, Jiajun, Deng, Kai.  2021.  A Mixed Method For Internal Threat Detection. 2021 IEEE 5th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC). 5:748–756.
In recent years, the development of deep learning has brought new ideas to internal threat detection. In this paper, three common deep learning algorithms for threat detection are optimized and innovated, and feature embedding, drift detection and sample weighting are introduced into FCNN. Adaptive multi-iteration method is introduced into Support Vector Data Description (SVDD). A dynamic threshold adjustment mechanism is introduced in VAE. In threat detection, three methods are used to detect the abnormal behavior of users, and the intersection of output results is taken as the final threat judgment basis. Experiments on cert r6.2 data set show that this method can significantly reduce the false positive rate.
2020-12-28
Barni, M., Nowroozi, E., Tondi, B., Zhang, B..  2020.  Effectiveness of Random Deep Feature Selection for Securing Image Manipulation Detectors Against Adversarial Examples. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2977—2981.

We investigate if the random feature selection approach proposed in [1] to improve the robustness of forensic detectors to targeted attacks, can be extended to detectors based on deep learning features. In particular, we study the transferability of adversarial examples targeting an original CNN image manipulation detector to other detectors (a fully connected neural network and a linear SVM) that rely on a random subset of the features extracted from the flatten layer of the original network. The results we got by considering three image manipulation detection tasks (resizing, median filtering and adaptive histogram equalization), two original network architectures and three classes of attacks, show that feature randomization helps to hinder attack transferability, even if, in some cases, simply changing the architecture of the detector, or even retraining the detector is enough to prevent the transferability of the attacks.