Biblio
Bi-dimensional empirical mode decomposition can decompose the source image into several Bi-dimensional Intrinsic Mode Functions. In the process of image decomposition, interpolation is needed and the upper and lower envelopes will be drawn. However, these interpolations and the drawings of upper and lower envelopes require a lot of computation time and manual screening. This paper proposes a simple but effective method that can maintain the characteristics of the original BEMD method, and the Hermite interpolation reconstruction method is used to replace the surface interpolation, and the variable neighborhood window method is used to replace the fixed neighborhood window method. We call it fast bi-dimensional empirical mode decomposition of the variable neighborhood window method based on research characteristics, and we finally complete the image fusion. The empirical analysis shows that this method can overcome the shortcomings that the source image features and details information of BIMF component decomposed from the original BEMD method are not rich enough, and reduce the calculation time, and the fusion quality is better.
This paper proposes a modified empirical-mode decomposition (EMD) filtering-based adaptive dynamic phasor estimation algorithm for the removal of exponentially decaying dc offset. Discrete Fourier transform does not have the ability to attain the accurate phasor of the fundamental frequency component in digital protective relays under dynamic system fault conditions because the characteristic of exponentially decaying dc offset is not consistent. EMD is a fully data-driven, not model-based, adaptive filtering procedure for extracting signal components. But the original EMD technique has high computational complexity and requires a large data series. In this paper, a short data series-based EMD filtering procedure is proposed and an optimum hermite polynomial fitting (OHPF) method is used in this modified procedure. The proposed filtering technique has high accuracy and convergent speed, and is greatly appropriate for relay applications. This paper illustrates the characteristics of the proposed technique and evaluates its performance by computer-simulated signals, PSCAD/EMTDC-generated signals, and real power system fault signals.
In view of the difficulty in selecting wavelet base and decomposition level for wavelet-based de-noising method, this paper proposes an adaptive de-noising method based on Ensemble Empirical Mode Decomposition (EEMD). The autocorrelation, cross-correlation method is used to adaptively find the signal-to-noise boundary layer of the EEMD in this method. Then the noise dominant layer is filtered directly and the signal dominant layer is threshold de-noised. Finally, the de-noising signal is reconstructed by each layer component which is de-noised. This method solves the problem of mode mixing in Empirical Mode Decomposition (EMD) by using EEMD and combines the advantage of wavelet threshold. In this paper, we focus on the analysis and verification of the correctness of the adaptive determination of the noise dominant layer. The simulation experiment results prove that this de-noising method is efficient and has good adaptability.