Visible to the public Biblio

Filters: Keyword is Fabric  [Clear All Filters]
2022-09-30
Alom, Ifteher, Eshita, Romana Mahjabin, Ibna Harun, Anam, Ferdous, Md Sadek, Kamrul Bashar Shuhan, Mirza, Chowdhury, Mohammad Jabed M, Shahidur Rahman, Mohammad.  2021.  Dynamic Management of Identity Federations using Blockchain. 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1–9.
Federated Identity Management (FIM) is a model of identity management in which different trusted organizations can provide secure online services to their uses. Security Assertion Markup Language (SAML) is one of the widely-used technologies for FIM. However, a SAML-based FIM has two significant issues: the metadata (a crucial component in SAML) has security issues, and federation management is hard to scale. The concept of dynamic identity federation has been introduced, enabling previously unknown entities to join in a new federation facilitating inter-organization service provisioning to address federation management's scalability issue. However, the existing dynamic federation approaches have security issues concerning confidentiality, integrity, authenticity, and transparency. In this paper, we present the idea of facilitating dynamic identity federations utilizing blockchain technology to improve the existing approaches' security issues. We demonstrate its architecture based on a rigorous threat model and requirement analysis. We also discuss its implementation details, current protocol flows and analyze its performance to underline its applicability.
2022-02-24
Lin, Junxiong, Xu, Yajing, Lu, Zhihui, Wu, Jie, Ye, Houhao, Huang, Wenbing, Chen, Xuzhao.  2021.  A Blockchain-Based Evidential and Secure Bulk-Commodity Supervisory System. 2021 International Conference on Service Science (ICSS). :1–6.
In recent years, the commodities industry has grown rapidly under the stimulus of domestic demand and the expansion of cross-border trade. It has also been combined with the rapid development of e-commerce technology in the same period to form a flexible and efficient e-commerce system for bulk commodities. However, the hasty combination of both has inspired a lack of effective regulatory measures in the bulk industry, leading to constant industry chaos. Among them, the problem of lagging evidence in regulatory platforms is particularly prominent. Based on this, we design a blockchain-based evidential and secure bulk-commodity supervisory system (abbr. BeBus). Setting different privacy protection policies for each participant in the system, the solution ensures effective forensics and tamper-proof evidence to meet the needs of the bulk business scenario.
2021-01-11
Cao, S., Zou, J., Du, X., Zhang, X..  2020.  A Successive Framework: Enabling Accurate Identification and Secure Storage for Data in Smart Grid. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Due to malicious eavesdropping, forgery as well as other risks, it is challenging to dispose and store collected power data from smart grid in secure manners. Blockchain technology has become a novel method to solve the above problems because of its de-centralization and tamper-proof characteristics. It is especially well known that data stored in blockchain cannot be changed, so it is vital to seek out perfect mechanisms to ensure that data are compliant with high quality (namely, accuracy of the power data) before being stored in blockchain. This will help avoid losses due to low-quality data modification or deletion as needed in smart grid. Thus, we apply the parallel vision theory on the identification of meter readings to realize accurate power data. A cloud-blockchain fusion model (CBFM) is proposed for the storage of accurate power data, allowing for secure conducting of flexible transactions. Only power data calculated by parallel visual system instead of image data collected originally via robot would be stored in blockchain. Hence, we define the quality assurance before data uploaded to blockchain and security guarantee after data stored in blockchain as a successive framework, which is a brand new solution to manage efficiency and security as a whole for power data and data alike in other scenes. Security analysis and performance evaluations are performed, which prove that CBFM is highly secure and efficient impressively.