Biblio
It is technically challenging to conduct a security analysis of a dynamic network, due to the lack of methods and techniques to capture different security postures as the network changes. Graphical Security Models (e.g., Attack Graph) are used to assess the security of network systems, but it typically captures a snapshot of a network state to carry out the security analysis. To address this issue, we propose a new Graphical Security Model named Time-independent Hierarchical Attack Representation Model (Ti-HARM) that captures security of multiple network states by taking into account the time duration of each network state and the visibility of network components (e.g., hosts, edges) in each state. By incorporating the changes, we can analyse the security of dynamic networks taking into account all the threats appearing in different network states. Our experimental results show that the Ti-HARM can effectively capture and assess the security of dynamic networks which were not possible using existing graphical security models.
There is no doubt that security issues are on the rise and defense mechanisms are becoming one of the leading subjects for academic and industry experts. In this paper, we focus on the security domain and envision a new way of looking at the security life cycle. We utilize our vision to propose an asset-based approach to countermeasure zero day attacks. To evaluate our proposal, we built a prototype. The initial results are promising and indicate that our prototype will achieve its goal of detecting zero-day attacks.
Multiple Security Domains Nondeducibility, MSDND, yields results even when the attack hides important information from electronic monitors and human operators. Because MSDND is based upon modal frames, it is able to analyze the event system as it progresses rather than relying on traces of the system. Not only does it provide results as the system evolves, MSDND can point out attacks designed to be missed in other security models. This work examines information flow disruption attacks such as Stuxnet and formally explains the role that implicit trust in the cyber security of a cyber physical system (CPS) plays in the success of the attack. The fact that the attack hides behind MSDND can be used to help secure the system by modifications to break MSDND and leave the attack nowhere to hide. Modal operators are defined to allow the manipulation of belief and trust states within the model. We show how the attack hides and uses the operator's trust to remain undetected. In fact, trust in the CPS is key to the success of the attack.
Moving Target Defense (MTD) can enhance the resilience of cyber systems against attacks. Although there have been many MTD techniques, there is no systematic understanding and quantitative characterization of the power of MTD. In this paper, we propose to use a cyber epidemic dynamics approach to characterize the power of MTD. We define and investigate two complementary measures that are applicable when the defender aims to deploy MTD to achieve a certain security goal. One measure emphasizes the maximum portion of time during which the system can afford to stay in an undesired configuration (or posture), without considering the cost of deploying MTD. The other measure emphasizes the minimum cost of deploying MTD, while accommodating that the system has to stay in an undesired configuration (or posture) for a given portion of time. Our analytic studies lead to algorithms for optimally deploying MTD.