Visible to the public Biblio

Filters: Keyword is global coverage  [Clear All Filters]
2020-12-01
Di, A., Ruisheng, S., Lan, L., Yueming, L..  2019.  On the Large-Scale Traffic DDoS Threat of Space Backbone Network. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :192—194.

Satellite networks play an important role in realizing the combination of the space networks and ground networks as well as the global coverage of the Internet. However, due to the limitation of bandwidth resource, compared with ground network, space backbone networks are more likely to become victims of DDoS attacks. Therefore, we hypothesize an attack scenario that DDoS attackers make reflection amplification attacks, colluding with terminal devices accessing space backbone network, and exhaust bandwidth resources, resulting in degradation of data transmission and service delivery. Finally, we propose some plain countermeasures to provide solutions for future researchers.

2015-05-05
Aiyetoro, G., Takawira, F..  2014.  A Cross-layer Based Packet Scheduling Scheme for Multimedia Traffic in Satellite LTE Networks. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-6.

This paper proposes a new cross-layer based packet scheduling scheme for multimedia traffic in satellite Long Term Evolution (LTE) network which adopts MIMO technology. The Satellite LTE air interface will provide global coverage and hence complement its terrestrial counterpart in the provision of mobile services (especially multimedia services) to users across the globe. A dynamic packet scheduling scheme is very important towards actualizing an effective utilization of the limited available resources in satellite LTE networks without compromise to the Quality of Service (QoS) demands of multimedia traffic. Hence, the need for an effective packet scheduling algorithm cannot be overemphasized. The aim of this paper is to propose a new scheduling algorithm tagged Cross-layer Based Queue-Aware (CBQA) Scheduler that will provide a good trade-off among QoS, fairness and throughput. The newly proposed scheduler is compared to existing ones through simulations and various performance indices have been used. A land mobile dual-polarized GEO satellite system has been considered for this work.