Biblio
Filters: Keyword is centralized differential privacy [Clear All Filters]
Lightweight Crypto-Assisted Distributed Differential Privacy for Privacy-Preserving Distributed Learning. 2020 International Joint Conference on Neural Networks (IJCNN). :1–8.
.
2020. The appearance of distributed learning allows multiple participants to collaboratively train a global model, where instead of directly releasing their private training data with the server, participants iteratively share their local model updates (parameters) with the server. However, recent attacks demonstrate that sharing local model updates is not sufficient to provide reasonable privacy guarantees, as local model updates may result in significant privacy leakage about local training data of participants. To address this issue, in this paper, we present an alternative approach that combines distributed differential privacy (DDP) with a three-layer encryption protocol to achieve a better privacy-utility tradeoff than the existing DP-based approaches. An unbiased encoding algorithm is proposed to cope with floating-point values, while largely reducing mean squared error due to rounding. Our approach dispenses with the need for any trusted server, and enables each party to add less noise to achieve the same privacy and similar utility guarantees as that of the centralized differential privacy. Preliminary analysis and performance evaluation confirm the effectiveness of our approach, which achieves significantly higher accuracy than that of local differential privacy approach, and comparable accuracy to the centralized differential privacy approach.