Biblio
In this paper, we propose a frozen bit selection scheme for polar coding scheme combined with physical layer security that enhances the security of two legitimate users on a wiretap channel. By flipping certain frozen bits, the bit-error rate (BER) of an eavesdropper is maximized while the BER of the legitimate receiver is unaffected. An ARQ protocol is proposed that only feeds back a small proportion of the frozen bits to the transmitter, which increases the secrecy rate. The scheme is evaluated on a wiretap channel affected by impulsive noise and we consider cases where the eavesdropper's channel is actually more impulsive than the main channel. Simulation results show that the proposed scheme ensures the eavesdropper's BER is high even when only one frozen bit is flipped and this is achieved even when their channel is more impulsive than the main channel.
Transmission techniques based on channel coding with feedback are proposed in this paper to enhance the security of wireless communications systems at the physical layer. Reliable and secure transmission over an additive noise Gaussian wiretap channel is investigated using Bose-Chaudhuri-Hocquenghem (BCH) and Low-Density Parity-Check (LDPC) channel codes. A hybrid automatic repeat-request (HARQ) protocol is used to allow for the retransmission of coded packets requested by the intended receiver (Bob). It is assumed that an eavesdropper (Eve) has access to all forward and feedback transmitted packets. To limit the information leakage to Eve, retransmitted packets are subdivided into smaller granular subpackets. Retransmissions are stopped as soon as the decoding process at the legitimate (Bob) receiver converges. For the hard decision decoded BCH codes, a framework to compute the frame error probability with granular HARQ is proposed. For LDPC codes, the HARQ retransmission requests are based on received symbols likelihood computations: the legitimate recipient request for the retransmission of the set of bits that are more likely to help for successful LDPC decoding. The performances of the proposed techniques are assessed for nul and negative security gap (SG) values, that is when the eavesdropper's channel benefits from equal or better channel conditions than the legitimate channel.
In this work, Automatic-Repeat-Request (ARQ) and Maximal Ratio Combination (MRC), have been jointly exploited to enhance the confidentiality of wireless services requested by a legitimate user (Bob) against an eavesdropper (Eve). The obtained security performance is analyzed using Packet Error Rate (PER), where the exact PER gap between Bob and Eve is determined. PER is proposed as a new practical security metric in cross layers (Physical/MAC) security design since it reflects the influence of upper layers mechanisms, and it can be linked with Quality of Service (QoS) requirements for various digital services such as voice and video. Exact PER formulas for both Eve and Bob in i.i.d Rayleigh fading channel are derived. The simulation and theoretical results show that the employment of ARQ mechanism and MRC on a signal level basis before demodulation can significantly enhance data security for certain services at specific SNRs. However, to increase and ensure the security of a specific service at any SNR, adaptive modulation is proposed to be used along with the aforementioned scheme. Analytical and simulation studies demonstrate orders of magnitude difference in PER performance between eavesdroppers and intended receivers.
We design polynomial time schemes for secure message transmission over arbitrary networks, in the presence of an eavesdropper, and where each edge corresponds to an erasure channel with public feedback. Our schemes are described through linear programming (LP) formulations, that explicitly select (possibly different) sets of paths for key-generation and message sending. Although our LPs are not always capacity-achieving, they outperform the best known alternatives in the literature, and extend to incorporate several interesting scenaria.
We consider the problem of cross-layer resource allocation with information-theoretic secrecy for uplink transmissions in time-varying cellular wireless networks. Particularly, each node in an uplink cellular network injects two types of traffic, confidential and open at rates chosen in order to maximize a global utility function while keeping the data queues stable and meeting a constraint on the secrecy outage probability. The transmitting node only knows the distribution of channel gains. Our scheme is based on Hybrid Automatic Repeat Request (HARQ) transmission with incremental redundancy. We prove that our scheme achieves a utility, arbitrarily close to the maximum achievable. Numerical experiments are performed to verify the analytical results and to show the efficacy of the dynamic control algorithm.