Biblio
In-network caching is a feature shared by all proposed Information Centric Networking (ICN) architectures as it is critical to achieving a more efficient retrieval of content. However, the default "cache everything everywhere" universal caching scheme has caused the emergence of several privacy threats. Timing attacks are one such privacy breach where attackers can probe caches and use timing analysis of data retrievals to identify if content was retrieved from the data source or from the cache, the latter case inferring that this content was requested recently. We have previously proposed a betweenness centrality based caching strategy to mitigate such attacks by increasing user anonymity. We demonstrated its efficacy in a transit-stub topology. In this paper, we further investigate the effect of betweenness centrality based caching on cache privacy and user anonymity in more general synthetic and real world Internet topologies. It was also shown that an attacker with access to multiple compromised routers can locate and track a mobile user by carrying out multiple timing analysis attacks from various parts of the network. We extend our privacy evaluation to a scenario with mobile users and show that a betweenness centrality based caching policy provides a mobile user with path privacy by increasing an attacker's difficulty in locating a moving user or identifying his/her route.
At a time when all it takes to open a Twitter account is a mobile phone, the act of authenticating information encountered on social media becomes very complex, especially when we lack measures to verify digital identities in the first place. Because the platform supports anonymity, fake news generated by dubious sources have been observed to travel much faster and farther than real news. Hence, we need valid measures to identify authors of misinformation to avert these consequences. Researchers propose different authorship attribution techniques to approach this kind of problem. However, because tweets are made up of only 280 characters, finding a suitable authorship attribution technique is a challenge. This research aims to classify authors of tweets by comparing machine learning methods like logistic regression and naive Bayes. The processes of this application are fetching of tweets, pre-processing, feature extraction, and developing a machine learning model for classification. This paper illustrates the text classification for authorship process using machine learning techniques. In total, there were 46,895 tweets used as both training and testing data, and unique features specific to Twitter were extracted. Several steps were done in the pre-processing phase, including removal of short texts, removal of stop-words and punctuations, tokenizing and stemming of texts as well. This approach transforms the pre-processed data into a set of feature vector in Python. Logistic regression and naive Bayes algorithms were applied to the set of feature vectors for the training and testing of the classifier. The logistic regression based classifier gave the highest accuracy of 91.1% compared to the naive Bayes classifier with 89.8%.
Analytics in big data is maturing and moving towards mass adoption. The emergence of analytics increases the need for innovative tools and methodologies to protect data against privacy violation. Many data anonymization methods were proposed to provide some degree of privacy protection by applying data suppression and other distortion techniques. However, currently available methods suffer from poor scalability, performance and lack of framework standardization. Current anonymization methods are unable to cope with the massive size of data processing. Some of these methods were especially proposed for MapReduce framework to operate in Big Data. However, they still operate in conventional data management approaches. Therefore, there were no remarkable gains in the performance. We introduce a framework that can operate in MapReduce environment to benefit from its advantages, as well as from those in Hadoop ecosystems. Our framework provides a granular user's access that can be tuned to different authorization levels. The proposed solution provides a fine-grained alteration based on the user's authorization level to access MapReduce domain for analytics. Using well-developed role-based access control approaches, this framework is capable of assigning roles to users and map them to relevant data attributes.
The ability to identify mobile apps in network traffic has significant implications in many domains, including traffic management, malware detection, and maintaining user privacy. App identification methods in the literature typically use deep packet inspection (DPI) and analyze HTTP headers to extract app fingerprints. However, these methods cannot be used if HTTP traffic is encrypted. We investigate whether Android apps can be identified from their launch-time network traffic using only TCP/IP headers. We first capture network traffic of 86,109 app launches by repeatedly running 1,595 apps on 4 distinct Android devices. We then use supervised learning methods used previously in the web page identification literature, to identify the apps that generated the traffic. We find that: (i) popular Android apps can be identified with 88% accuracy, by using the packet sizes of the first 64 packets they generate, when the learning methods are trained and tested on the data collected from same device; (ii) when the data from an unseen device (but similar operating system/vendor) is used for testing, the apps can be identified with 67% accuracy; (iii) the app identification accuracy does not drop significantly even if the training data are stale by several days, and (iv) the accuracy does drop quite significantly if the operating system/vendor is very different. We discuss the implications of our findings as well as open issues.
Membership revocation is essential for cryptographic applications, from traditional PKIs to group signatures and anonymous credentials. Of the various solutions for the revocation problem that have been explored, dynamic accumulators are one of the most promising. We propose Braavos, a new, RSA-based, dynamic accumulator. It has optimal communication complexity and, when combined with efficient zero-knowledge proofs, provides an ideal solution for anonymous revocation. For the construction of Braavos we use a modular approach: we show how to build an accumulator with better functionality and security from accumulators with fewer features and weaker security guarantees. We then describe an anonymous revocation component (ARC) that can be instantiated using any dynamic accumulator. ARC can be added to any anonymous system, such as anonymous credentials or group signatures, in order to equip it with a revocation functionality. Finally, we implement ARC with Braavos and plug it into Idemix, the leading implementation of anonymous credentials. This work resolves, for the first time, the problem of practical revocation for anonymous credential systems.
This paper proposes a novel wireless MAC-layer approach towards achieving channel access anonymity. Nodes autonomously select periodic TDMA-like time-slots for channel access by employing a novel channel sensing strategy, and they do so without explicitly sharing any identity information with other nodes in the network. An add-on hardware module for the proposed channel sensing has been developed and the proposed protocol has been implemented in Tinyos-2.x. Extensive evaluation has been done on a test-bed consisting of Mica2 hardware, where we have studied the protocol's functionality and convergence characteristics. The functionality results collected at a sniffer node using RSSI traces validate the syntax and semantics of the protocol. Experimentally evaluated convergence characteristics from the Tinyos test-bed were also found to be satisfactory.
Popular anonymity mechanisms such as Tor provide low communication latency but are vulnerable to traffic analysis attacks that can de-anonymize users. Moreover, known traffic-analysis-resistant techniques such as Dissent are impractical for use in latency-sensitive settings such as wireless networks. In this paper, we propose PriFi, a low-latency protocol for anonymous communication in local area networks that is provably secure against traffic analysis attacks. This allows members of an organization to access the Internet anonymously while they are on-site, via privacy-preserving WiFi networking, or off-site, via privacy-preserving virtual private networking (VPN). PriFi reduces communication latency using a client/relay/server architecture in which a set of servers computes cryptographic material in parallel with the clients to minimize unnecessary communication latency. We also propose a technique for protecting against equivocation attacks, with which a malicious relay might de-anonymize clients. This is achieved without adding extra latency by encrypting client messages based on the history of all messages they have received so far. As a result, any equivocation attempt makes the communication unintelligible, preserving clients' anonymity while holding the servers accountable.
Contactless communications have become omnipresent in our daily lives, from simple access cards to electronic passports. Such systems are particularly vulnerable to relay attacks, in which an adversary relays the messages from a prover to a verifier. Distance-bounding protocols were introduced to counter such attacks. Lately, there has been a very active research trend on improving the security of these protocols, but also on ensuring strong privacy properties with respect to active adversaries and malicious verifiers. In particular, a difficult threat to address is the terrorist fraud, in which a far-away prover cooperates with a nearby accomplice to fool a verifier. The usual defence against this attack is to make it impossible for the accomplice to succeed unless the prover provides him with enough information to recover his secret key and impersonate him later on. However, the mere existence of a long-term secret key is problematic with respect to privacy. In this paper, we propose a novel approach in which the prover does not leak his secret key but a reusable session key along with a group signature on it. This allows the adversary to impersonate him even without knowing his signature key. Based on this approach, we give the first distance-bounding protocol, called SPADE, integrating anonymity, revocability and provable resistance to standard threat models.
Personal privacy is an important issue when publishing social network data. An attacker may have information to reidentify private data. So, many researchers developed anonymization techniques, such as k-anonymity, k-isomorphism, l-diversity, etc. In this paper, we focus on graph k-degree anonymity by editing edges. Our method is divided into two steps. First, we propose an efficient algorithm to find a new degree sequence with theoretically minimal edit cost. Second, we insert and delete edges based on the new degree sequence to achieve k-degree anonymity.
K-anonymity is a popular model used in microdata publishing to protect individual privacy. This paper introduces the idea of ball tree and projection area density partition into k-anonymity algorithm.The traditional kd-tree implements the division by forming a super-rectangular, but the super-rectangular has the area angle, so it cannot guarantee that the records on the corner are most similar to the records in this area. In this paper, the super-sphere formed by the ball-tree is used to address this problem. We adopt projection area density partition to increase the density of the resulting recorded points. We implement our algorithm with the Gotrack dataset and the Adult dataset in UCI. The experimentation shows that the k-anonymity algorithm based on ball-tree and projection area density partition, obtains more anonymous groups, and the generalization rate is lower. The smaller the K is, the more obvious the result advantage is. The result indicates that our algorithm can make data usability even higher.
Low-latency anonymity systems such as Tor rely on intermediate relays to forward user traffic; these relays, however, are often unreliable, resulting in a degraded user experience. Worse yet, malicious relays may introduce deliberate failures in a strategic manner in order to increase their chance of compromising anonymity. In this paper we propose using a reputation metric that can profile the reliability of relays in an anonymity system based on users' past experience. The two main challenges in building a reputation-based system for an anonymity system are: first, malicious participants can strategically oscillate between good and malicious nature to evade detection, and second, an observed failure in an anonymous communication cannot be uniquely attributed to a single relay. Our proposed framework addresses the former challenge by using a proportional-integral-derivative (PID) controller-based reputation metric that ensures malicious relays adopting time-varying strategic behavior obtain low reputation scores over time, and the latter by introducing a filtering scheme based on the evaluated reputation score to effectively discard relays mounting attacks. We collect data from the live Tor network and perform simulations to validate the proposed reputation-based filtering scheme. We show that an attacker does not gain any significant benefit by performing deliberate failures in the presence of the proposed reputation framework.
This work investigates the fundamental constraints of anonymous communication (AC) protocols. We analyze the relationship between bandwidth overhead, latency overhead, and sender anonymity or recipient anonymity against the global passive (network-level) adversary. We confirm the trilemma that an AC protocol can only achieve two out of the following three properties: strong anonymity (i.e., anonymity up to a negligible chance), low bandwidth overhead, and low latency overhead. We further study anonymity against a stronger global passive adversary that can additionally passively compromise some of the AC protocol nodes. For a given number of compromised nodes, we derive necessary constraints between bandwidth and latency overhead whose violation make it impossible for an AC protocol to achieve strong anonymity. We analyze prominent AC protocols from the literature and depict to which extent those satisfy our necessary constraints. Our fundamental necessary constraints offer a guideline not only for improving existing AC systems but also for designing novel AC protocols with non-traditional bandwidth and latency overhead choices.
Cyber anonymity tools have attracted wide attention in resisting network traffic censorship and surveillance, and have played a crucial role for open communications over the Internet. The Onion Routing (Tor) is considered the prevailing technique for circumventing the traffic surveillance and providing cyber anonymity. Tor operates by tunneling a traffic through a series of relays, making such traffic to appear as if it originated from the last relay in the traffic path, rather than from the original user. However, Tor faced some obstructions in carrying out its goal effectively, such as insufficient performance and limited capacity. This paper presents a cyber anonymity technique based on software-defined networking; named SOR, which builds onion-routed tunnels across multiple anonymity service providers. SOR architecture enables any cloud tenants to participate in the anonymity service via software-defined networking. Our proposed architecture leverages the large capacity and robust connectivity of the commercial cloud networks to elevate the performance of the cyber anonymity service.
Smart meters provide fine-grained electricity consumption reporting to electricity providers. This constitutes an invasive factor into the privacy of the consumers, which has raised many privacy concerns. Although billing requires attributable consumption reporting, consumption reporting for operational monitoring and control measures can be non-attributable. However, the privacy-preserving AMS schemes in the literature tend to address these two categories disjointly — possibly due to their somewhat contradictory characteristics. In this paper, we propose an efficient two-party privacy-preserving cryptographic scheme that addresses operational control measures and billing jointly. It is computationally efficient as it is based on symmetric cryptographic primitives. No online trusted third party (TTP) is required.
Data privacy has been an important area of research in recent years. Dataset often consists of sensitive data fields, exposure of which may jeopardize interests of individuals associated with the data. In order to resolve this issue, privacy techniques can be used to hinder the identification of a person through anonymization of the sensitive data in the dataset to protect sensitive information, while the anonymized dataset can be used by the third parties for analysis purposes without obstruction. In this research, we investigated a privacy technique, k-anonymity for different values of on different number columns of the dataset. Next, the information loss due to k-anonymity is computed. The anonymized files go through the classification process by some machine-learning algorithms i.e., Naive Bayes, J48 and neural network in order to check a balance between data anonymity and data utility. Based on the classification accuracy, the optimal values of and are obtained, and thus, the optimal and can be used for k-anonymity algorithm to anonymize optimal number of columns of the dataset.
In cyber threat information sharing, secure transfer and protecting privacy are very important. In this paper we solve these issues by suggesting a platform based on private permissioned Blockchain, which provides us with access control as well. The platform is called Anon-ISAC and is built on the Enhanced Privacy ID (EPID) zero-knowledge proof scheme. It makes use of permissioned Blockchain as a way to keep identity anonymous. Organizations can share their information on incidents or other artifacts among trusted parties, while they keep their identity hidden. This will save them from unwanted consequences of exposure of sensitive security information.