Biblio
Filters: Keyword is DeepFake Video [Clear All Filters]
Hybrid Recurrent Deep Learning Model for DeepFake Video Detection. 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). :1–5.
.
2021. Nowadays deepfake videos are concern with social ethics, privacy and security. Deepfake videos are synthetically generated videos that are generated by modifying the facial features and audio features to impose one person’s facial data and audio to other videos. These videos can be used for defaming and fraud. So, counter these types of manipulations and threats, detection of deepfake video is needed. This paper proposes multilayer hybrid recurrent deep learning models for deepfake video detection. Proposed models exploit the noise-based temporal facial convolutional features and temporal learning of hybrid recurrent deep learning models. Experiment results of these models demonstrate its performance over stacked recurrent deep learning models.
A Comparative Evaluation of Local Feature Descriptors for DeepFakes Detection. 2019 IEEE International Symposium on Technologies for Homeland Security (HST). :1—5.
.
2019. The global proliferation of affordable photographing devices and readily-available face image and video editing software has caused a remarkable rise in face manipulations, e.g., altering face skin color using FaceApp. Such synthetic manipulations are becoming a very perilous problem, as altered faces not only can fool human experts but also have detrimental consequences on automated face identification systems (AFIS). Thus, it is vital to formulate techniques to improve the robustness of AFIS against digital face manipulations. The most prominent countermeasure is face manipulation detection, which aims at discriminating genuine samples from manipulated ones. Over the years, analysis of microtextural features using local image descriptors has been successfully used in various applications owing to their flexibility, computational simplicity, and performances. Therefore, in this paper, we study the possibility of identifying manipulated faces via local feature descriptors. The comparative experimental investigation of ten local feature descriptors on a new and publicly available DeepfakeTIMIT database is reported.
Image Feature Detectors for Deepfake Video Detection. 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA). :1—4.
.
2019. Detecting DeepFake videos are one of the challenges in digital media forensics. This paper proposes a method to detect deepfake videos using Support Vector Machine (SVM) regression. The SVM classifier can be trained with feature points extracted using one of the different feature-point detectors such as HOG, ORB, BRISK, KAZE, SURF, and FAST algorithms. A comprehensive test of the proposed method is conducted using a dataset of original and fake videos from the literature. Different feature point detectors are tested. The result shows that the proposed method of using feature-detector-descriptors for training the SVM can be effectively used to detect false videos.