Visible to the public Biblio

Filters: Keyword is wavelength division multiplexing  [Clear All Filters]
2022-09-16
Anh, Dao Vu, Tran Thi Thanh, Thuy, Huu, Long Nguyen, Dung Truong, Cao, Xuan, Quyen Nguyen.  2021.  Performance Analysis of High-Speed Wavelength Division Multiplexing Communication Between Chaotic Secure and Optical Fiber Channels Using DP-16QAM Scheme. 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE). :33—38.
In this paper, we propose a numerical simulation investigation of the wavelength division multiplexing mechanism between a chaotic secure channel and a traditional fiber channel using the advanced modulation method DP-16QAM at the bitrate of 80Gbps, the fiber length of 80 km and 100 GHz channel spacing in C-band. Our paper investigates correlation coefficients between the transmitter and also the receiver for two forms of communication channels. Our simulation results demonstrate that, in all cases, BER is always below 2.10-4 even when we have not used the forward-error-correction method. Besides, cross-interaction between the chaotic channel and also the non-chaotic channel is negligible showing a highly independent level between two channels.
2021-03-22
Li, C.-Y., Chang, C.-H., Lu, D.-Y..  2020.  Full-Duplex Self-Recovery Optical Fibre Transport System Based on a Passive Single-Line Bidirectional Optical Add/Drop Multiplexer. IEEE Photonics Journal. 12:1–10.
A full-duplex self-recovery optical fibre transport system is proposed on the basis of a novel passive single-line bidirectional optical add/drop multiplexer (SBOADM). This system aims to achieve an access network with low complexity and network protection capability. Polarisation division multiplexing technique, optical double-frequency application and wavelength reuse method are also employed in the transport system to improve wavelength utilisation efficiency and achieve colourless optical network unit. When the network comprises a hybrid tree-ring topology, the downstream signals can be bidirectionally transmitted and the upstream signals can continuously be sent back to the central office in the reverse pathways due to the remarkable routing function of the SBOADM. Thus, no complicated optical multiplexer/de-multiplexer components or massive optical switches are required in the transport system. If a fibre link failure occurs in the ring topology, then the blocked network connections can be recovered by switching only a single optical switch preinstalled in the remote node. Simulation results show that the proposed architecture can recover the network function effectively and provide identical transmission performance to overcome the impact of a breakpoint in the network. The proposed transport system presents remarkable flexibility and convenience in expandability and breakpoint self-recovery.
2020-06-19
Maeda, Hideki, Kawahara, Hiroki, Saito, Kohei, Seki, Takeshi, Kani, Junichi.  2019.  Performance Degradation of SD-FEC Due to XPM Phase Noise in WDM Transmission System with Low-Speed Optical Supervisory Channel. 2019 IEEE Photonics Conference (IPC). :1—2.

An experiment and numerical simulations analyze low-speed OSC derived XPM-induced phase noise penalty in 100-Gbps WDM systems. WDM transmission performance exhibits signal bit-pattern dependence on OSC, which is due to deterioration in SD-FEC performance.

2020-02-17
de Andrade Bragagnolle, Thiago, Pereira Nogueira, Marcelo, de Oliveira Santos, Melissa, do Prado, Afonso José, Ferreira, André Alves, de Mello Fagotto, Eric Alberto, Aldaya, Ivan, Abbade, Marcelo Luís Francisco.  2019.  All-Optical Spectral Shuffling of Signals Traveling through Different Optical Routes. 2019 21st International Conference on Transparent Optical Networks (ICTON). :1–4.
A recent proposed physical layer encryption technique uses an all-optical setup based on spatial light modulators to split two or more wavelength division multiplexed (WDM) signals in several spectral slices and to shuffle these slices. As a result, eavesdroppers aimed to recover information from a single target signal need to handle all the signals involved in the shuffling process. In this work, computer simulations are used to analyse the case where the shuffled signals propagate through different optical routes. From a security point of view, this is an interesting possibility because it obliges eavesdroppers to tap different optical fibres/ cables. On the other hand, each shuffled signal experiences different physical impairments and the deleterious consequences of these effects must be carefully investigated. Our results indicate that, in a metropolitan area network environment, penalties caused by attenuation and dispersion differences may be easily compensated with digital signal processing algorithms that are presently deployed.
2018-01-23
Khan, S., Ullah, K..  2017.  Smart elevator system for hazard notification. 2017 International Conference on Innovations in Electrical Engineering and Computational Technologies (ICIEECT). :1–4.

In this proposed method, the traditional elevators are upgraded in such a way that any alarming situation in the elevator can be detected and then sent to a main center where further action can be taken accordingly. Different emergency situation can be handled by implementing the system. Smart elevator system works by installing different modules inside the elevator such as speed sensors which will detect speed variations occurring above or below a certain threshold of elevator speed. The smart elevator system installed within the elevator sends a message to the emergency response center and sends an automated call as well. The smart system also includes an emotion detection algorithm which will detect emotions of the individual based on their expression in the elevator. The smart system also has a whisper detection system as well to know if someone stuck inside the elevator is alive during any hazardous situation. A broadcast signal is used as a check in the elevator system to evaluate if every part of the system is in stable state. Proposed system can completely replace the current elevator systems and become part of smart homes.

2015-05-05
Juzi Zhao, Subramaniam, S., Brandt-Pearce, M..  2014.  Intradomain and interdomain QoT-aware RWA for translucent optical networks. Optical Communications and Networking, IEEE/OSA Journal of. 6:536-548.

Physical impairments in long-haul optical networks mandate that optical signals be regenerated within the (so-called translucent) network. Being expensive devices, regenerators are expected to be allocated sparsely and must be judiciously utilized. Next-generation optical-transport networks will include multiple domains with diverse technologies, protocols, granularities, and carriers. Because of confidentiality and scalability concerns, the scope of network-state information (e.g., topology, wavelength availability) may be limited to within a domain. In such networks, the problem of routing and wavelength assignment (RWA) aims to find an adequate route and wavelength(s) for lightpaths carrying end-to-end service demands. Some state information may have to be explicitly exchanged among the domains to facilitate the RWA process. The challenge is to determine which information is the most critical and make a wise choice for the path and wavelength(s) using the limited information. Recently, a framework for multidomain path computation called backward-recursive path-computation (BRPC) was standardized by the Internet Engineering Task Force. In this paper, we consider the RWA problem for connections within a single domain and interdomain connections so that the quality of transmission (QoT) requirement of each connection is satisfied, and the network-level performance metric of blocking probability is minimized. Cross-layer heuristics that are based on dynamic programming to effectively allocate the sparse regenerators are developed, and extensive simulation results are presented to demonstrate their effectiveness.