Visible to the public Biblio

Filters: Keyword is biometric identity  [Clear All Filters]
2021-03-09
Bronzin, T., Prole, B., Stipić, A., Pap, K..  2020.  Individualization of Anonymous Identities Using Artificial Intelligence (AI). 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). :1058–1063.

Individualization of anonymous identities using artificial intelligence - enables innovative human-computer interaction through the personalization of communication which is, at the same time, individual and anonymous. This paper presents possible approach for individualization of anonymous identities in real time. It uses computer vision and artificial intelligence to automatically detect and recognize person's age group, gender, human body measures, proportions and other specific personal characteristics. Collected data constitutes the so-called person's biometric footprint and are linked to a unique (but still anonymous) identity that is recorded in the computer system, along with other information that make up the profile of the person. Identity anonymization can be achieved by appropriate asymmetric encryption of the biometric footprint (with no additional personal information being stored) and integrity can be ensured using blockchain technology. Data collected in this manner is GDPR compliant.

2021-01-18
Ibrahim, A. K., Hagras, E. A. A. A., Alfhar, A., El-Kamchochi, H. A..  2020.  Dynamic Chaotic Biometric Identity Isomorphic Elliptic Curve (DCBI-IEC) for Crypto Images. 2020 2nd International Conference on Computer Communication and the Internet (ICCCI). :119–125.

In this paper, a novel Dynamic Chaotic Biometric Identity Isomorphic Elliptic Curve (DCBI-IEC) has been introduced for Image Encryption. The biometric digital identity is extracted from the user fingerprint image as fingerprint minutia data incorporated with the chaotic logistic map and hence, a new DCBDI-IEC has been suggested. DCBI-IEC is used to control the key schedule for all encryption and decryption processing. Statistical analysis, differential analysis and key sensitivity test are performed to estimate the security strengths of the proposed DCBI-IEC system. The experimental results show that the proposed algorithm is robust against common signal processing attacks and provides a high security level for image encryption application.