Biblio
Emotions are a powerful tool in communication and one way that humans show their emotions is through their facial expressions. One of the challenging and powerful tasks in social communications is facial expression recognition, as in non-verbal communication, facial expressions are key. In the field of Artificial Intelligence, Facial Expression Recognition (FER) is an active research area, with several recent studies using Convolutional Neural Networks (CNNs). In this paper, we demonstrate the classification of FER based on static images, using CNNs, without requiring any pre-processing or feature extraction tasks. The paper also illustrates techniques to improve future accuracy in this area by using pre-processing, which includes face detection and illumination correction. Feature extraction is used to extract the most prominent parts of the face, including the jaw, mouth, eyes, nose, and eyebrows. Furthermore, we also discuss the literature review and present our CNN architecture, and the challenges of using max-pooling and dropout, which eventually aided in better performance. We obtained a test accuracy of 61.7% on FER2013 in a seven-classes classification task compared to 75.2% in state-of-the-art classification.
Dependence on web applications is increasing very rapidly in recent time for social communications, health problem, financial transaction and many other purposes. Unfortunately, presence of security weaknesses in web applications allows malicious user's to exploit various security vulnerabilities and become the reason of their failure. Currently, SQL Injection (SQLI) and Cross-Site Scripting (XSS) vulnerabilities are most dangerous security vulnerabilities exploited in various popular web applications i.e. eBay, Google, Facebook, Twitter etc. Research on defensive programming, vulnerability detection and attack prevention techniques has been quite intensive in the past decade. Defensive programming is a set of coding guidelines to develop secure applications. But, mostly developers do not follow security guidelines and repeat same type of programming mistakes in their code. Attack prevention techniques protect the applications from attack during their execution in actual environment. The difficulties associated with accurate detection of SQLI and XSS vulnerabilities in coding phase of software development life cycle. This paper proposes a classification of software security approaches used to develop secure software in various phase of software development life cycle. It also presents a survey of static analysis based approaches to detect SQL Injection and cross-site scripting vulnerabilities in source code of web applications. The aim of these approaches is to identify the weaknesses in source code before their exploitation in actual environment. This paper would help researchers to note down future direction for securing legacy web applications in early phases of software development life cycle.