Visible to the public Biblio

Filters: Keyword is OpenCV  [Clear All Filters]
2023-06-22
Malla, Sai Anish, Kapoor, Khushee, Kejariwal, Adithya, Rao, Vidya, Kundapur, Poornimaa Panduranga.  2022.  SWARM: Sanitizer With Attendance through Remote Monitoring. 2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER). :316–319.
With Covid19 being endemic, it is very essential to continue proper physical hygiene protocols even today to avoid escalation. To ensure hygiene inside educational institutions, many governing bodies-imposed protocols to insist students wear hand gloves and facemasks. Such an implementation, however, has increased surgical waste in and around educational institutions, and also there is a rise in allergies due to the constant use of hand gloves by the students. Hence, a prototype of a hand sanitization-based attendance monitoring system has been proposed in the current research paper. This proposed sanitizer with attendance through remote monitoring (SWARM) uses Raspberry Pi devices to capture the image of a student’s identity card holding the registration number and through a bar code analysis module of computer vision, the ID number is extracted. This ID number is compared with a master attendance file to mark the students’ presence and then the updated file is shared with the concerned teacher via email. Such a setup is installed in the laboratory premise, thereby reducing the unnecessary use and disposal of surgical waste within the educational premise.
2022-07-29
Azhari Halim, Muhammad Arif, Othman, Mohd. Fairuz Iskandar, Abidin, Aa Zezen Zaenal, Hamid, Erman, Harum, Norharyati, Shah, Wahidah Md.  2021.  Face Recognition-based Door Locking System with Two-Factor Authentication Using OpenCV. 2021 Sixth International Conference on Informatics and Computing (ICIC). :1—7.

This project develops a face recognition-based door locking system with two-factor authentication using OpenCV. It uses Raspberry Pi 4 as the microcontroller. Face recognition-based door locking has been around for many years, but most of them only provide face recognition without any added security features, and they are costly. The design of this project is based on human face recognition and the sending of a One-Time Password (OTP) using the Twilio service. It will recognize the person at the front door. Only people who match the faces stored in its dataset and then inputs the correct OTP will have access to unlock the door. The Twilio service and image processing algorithm Local Binary Pattern Histogram (LBPH) has been adopted for this system. Servo motor operates as a mechanism to access the door. Results show that LBPH takes a short time to recognize a face. Additionally, if an unknown face is detected, it will log this instance into a "Fail" file and an accompanying CSV sheet.

2021-01-25
Rizki, R. P., Hamidi, E. A. Z., Kamelia, L., Sururie, R. W..  2020.  Image Processing Technique for Smart Home Security Based On the Principal Component Analysis (PCA) Methods. 2020 6th International Conference on Wireless and Telematics (ICWT). :1–4.
Smart home is one application of the pervasive computing branch of science. Three categories of smart homes, namely comfort, healthcare, and security. The security system is a part of smart home technology that is very important because the intensity of crime is increasing, especially in residential areas. The system will detect the face by the webcam camera if the user enters the correct password. Face recognition will be processed by the Raspberry pi 3 microcontroller with the Principal Component Analysis method using OpenCV and Python software which has outputs, namely actuators in the form of a solenoid lock door and buzzer. The test results show that the webcam can perform face detection when the password input is successful, then the buzzer actuator can turn on when the database does not match the data taken by the webcam or the test data and the solenoid door lock actuator can run if the database matches the test data taken by the sensor. webcam. The mean response time of face detection is 1.35 seconds.