Visible to the public Biblio

Filters: Keyword is cyber risk reduction  [Clear All Filters]
2022-01-31
Gómez, Giancarlo, Espina, Enrique, Armas-Aguirre, Jimmy, Molina, Juan Manuel Madrid.  2021.  Cybersecurity architecture functional model for cyber risk reduction in IoT based wearable devices. 2021 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI). :1—4.
In this paper, we propose a functional model for the implementation of devices that use the Internet of Things (IoT). In recent years, the number of devices connected to the internet per person has increased from 0.08 in 2003 to a total of 6.58 in 2020, suggesting an increase of 8,225% in 7 years. The proposal includes a functional IoT model of a cybersecurity architecture by including components to ensure compliance with the proposed controls within a cybersecurity framework to detect cyber threats in IoT-based wearable devices. The proposal focuses on reducing the number of vulnerabilities present in IoT devices since, on average, 57% of these devices are vulnerable to attacks. The model has a 3-layer structure: business, applications, and technology, where components such as policies, services and nodes are described accordingly. The validation was done through a simulated environment of a system for the control and monitoring of pregnant women using wearable devices. The results show reductions of the probability index and the impact of risks by 14.95% and 6.81% respectively.
2021-01-25
Malzahn, D., Birnbaum, Z., Wright-Hamor, C..  2020.  Automated Vulnerability Testing via Executable Attack Graphs. 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–10.
Cyber risk assessments are an essential process for analyzing and prioritizing security issues. Unfortunately, many risk assessment methodologies are marred by human subjectivity, resulting in non-repeatable, inconsistent findings. The absence of repeatable and consistent results can lead to suboptimal decision making with respect to cyber risk reduction. There is a pressing need to reduce cyber risk assessment uncertainty by using tools that use well defined inputs, producing well defined results. This paper presents Automated Vulnerability and Risk Analysis (AVRA), an end-to-end process and tool for identifying and exploiting vulnerabilities, designed for use in cyber risk assessments. The approach presented is more comprehensive than traditional vulnerability scans due to its analysis of an entire network, integrating both host and network information. AVRA automatically generates a detailed model of the network and its individual components, which is used to create an attack graph. Then, AVRA follows individual attack paths, automatically launching exploits to reach a particular objective. AVRA was successfully tested within a virtual environment to demonstrate practicality and usability. The presented approach and resulting system enhances the cyber risk assessment process through rigor, repeatability, and objectivity.