Visible to the public Biblio

Filters: Keyword is XSS filters  [Clear All Filters]
2018-02-15
Lekies, Sebastian, Kotowicz, Krzysztof, Groß, Samuel, Vela Nava, Eduardo A., Johns, Martin.  2017.  Code-Reuse Attacks for the Web: Breaking Cross-Site Scripting Mitigations via Script Gadgets. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1709–1723.
Cross-Site Scripting (XSS) is an unremitting problem for the Web. Since its initial public documentation in 2000 until now, XSS has been continuously on top of the vulnerability statistics. Even though there has been a considerable amount of research and developer education to address XSS on the source code level, the overall number of discovered XSS problems remains high. Because of this, various approaches to mitigate XSS have been proposed as a second line of defense, with HTML sanitizers, Web Application Firewalls, browser-based XSS filters, and the Content Security Policy being some prominent examples. Most of these mechanisms focus on script tags and event handlers, either by removing them from user-provided content or by preventing their script code from executing. In this paper, we demonstrate that this approach is no longer sufficient for modern applications: We describe a novel Web attack that can circumvent all of theses currently existing XSS mitigation techniques. In this attack, the attacker abuses so called script gadgets (legitimate JavaScript fragments within an application's legitimate code base) to execute JavaScript. In most cases, these gadgets utilize DOM selectors to interact with elements in the Web document. Through an initial injection point, the attacker can inject benign-looking HTML elements which are ignored by these mitigation techniques but match the selector of the gadget. This way, the attacker can hijack the input of a gadget and cause processing of his input, which in turn leads to code execution of attacker-controlled values. We demonstrate that these gadgets are omnipresent in almost all modern JavaScript frameworks and present an empirical study showing the prevalence of script gadgets in productive code. As a result, we assume most mitigation techniques in web applications written today can be bypassed.
2015-05-05
Mewara, B., Bairwa, S., Gajrani, J..  2014.  Browser's defenses against reflected cross-site scripting attacks. Signal Propagation and Computer Technology (ICSPCT), 2014 International Conference on. :662-667.

Due to the frequent usage of online web applications for various day-to-day activities, web applications are becoming most suitable target for attackers. Cross-Site Scripting also known as XSS attack, one of the most prominent defacing web based attack which can lead to compromise of whole browser rather than just the actual web application, from which attack has originated. Securing web applications using server side solutions is not profitable as developers are not necessarily security aware. Therefore, browser vendors have tried to evolve client side filters to defend against these attacks. This paper shows that even the foremost prevailing XSS filters deployed by latest versions of most widely used web browsers do not provide appropriate defense. We evaluate three browsers - Internet Explorer 11, Google Chrome 32, and Mozilla Firefox 27 for reflected XSS attack against different type of vulnerabilities. We find that none of above is completely able to defend against all possible type of reflected XSS vulnerabilities. Further, we evaluate Firefox after installing an add-on named XSS-Me, which is widely used for testing the reflected XSS vulnerabilities. Experimental results show that this client side solution can shield against greater percentage of vulnerabilities than other browsers. It is witnessed to be more propitious if this add-on is integrated inside the browser instead being enforced as an extension.