Visible to the public Biblio

Filters: Keyword is JavaScript  [Clear All Filters]
2018-01-23
Groß, Tobias, Müller, Tilo.  2017.  Protecting JavaScript Apps from Code Analysis. Proceedings of the 4th Workshop on Security in Highly Connected IT Systems. :1–6.
Apps written in JavaScript are an easy target for reverse engineering attacks, e.g. to steal the intellectual property or to create a clone of an app. Unprotected JavaScript apps even contain high level information such as developer comments, if those were not explicitly stripped. This fact becomes more and more important with the increasing popularity of JavaScript as language of choice for both web development and hybrid mobile apps. In this paper, we present a novel JavaScript obfuscator based on the Google Closure Compiler, which transforms readable JavaScript source code into a representation much harder to analyze for adversaries. We evaluate this obfuscator regarding its performance impact and its semantics-preserving property.
2017-11-20
Sahu, A., Singh, A..  2016.  Securing IoT devices using JavaScript based sandbox. 2016 IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT). :1476–1482.

Internet of Things is gaining research attention as one of the important fields that will affect our daily life vastly. Today, around us this revolutionary technology is growing and evolving day by day. This technology offers certain benefits like automatic processing, improved logistics and device communication that would help us to improve our social life, health, living standards and infrastructure. However, due to their simple architecture and presence on wide variety of fields they pose serious concern to security. Due to the low end architecture there are many security issues associated with IoT network devices. In this paper, we try to address the security issue by proposing JavaScript sandbox as a method to execute IoT program. Using this sandbox we also implement the strategy to control the execution of the sandbox while the program is being executed on it.

2017-09-11
Snyder, Peter, Ansari, Lara, Taylor, Cynthia, Kanich, Chris.  2016.  Browser Feature Usage on the Modern Web. Proceedings of the 2016 Internet Measurement Conference. :97–110.

Modern web browsers are incredibly complex, with millions of lines of code and over one thousand JavaScript functions and properties available to website authors. This work investigates how these browser features are used on the modern, open web. We find that JavaScript features differ wildly in popularity, with over 50% of provided features never used on the web's 10,000 most popular sites according to Alexa We also look at how popular ad and tracking blockers change the features used by sites, and identify a set of approximately 10% of features that are disproportionately blocked (prevented from executing by these extensions at least 90% of the time they are used). We additionally find that in the presence of these blockers, over 83% of available features are executed on less than 1% of the most popular 10,000 websites. We further measure other aspects of browser feature usage on the web, including how many features websites use, how the length of time a browser feature has been in the browser relates to its usage on the web, and how many security vulnerabilities have been associated with related browser features.

2017-08-18
Mitropoulos, Dimitris, Stroggylos, Konstantinos, Spinellis, Diomidis, Keromytis, Angelos D..  2016.  How to Train Your Browser: Preventing XSS Attacks Using Contextual Script Fingerprints. ACM Trans. Priv. Secur.. 19:2:1–2:31.

Cross-Site Scripting (XSS) is one of the most common web application vulnerabilities. It is therefore sometimes referred to as the “buffer overflow of the web.” Drawing a parallel from the current state of practice in preventing unauthorized native code execution (the typical goal in a code injection), we propose a script whitelisting approach to tame JavaScript-driven XSS attacks. Our scheme involves a transparent script interception layer placed in the browser’s JavaScript engine. This layer is designed to detect every script that reaches the browser, from every possible route, and compare it to a list of valid scripts for the site or page being accessed; scripts not on the list are prevented from executing. To avoid the false positives caused by minor syntactic changes (e.g., due to dynamic code generation), our layer uses the concept of contextual fingerprints when comparing scripts. Contextual fingerprints are identifiers that represent specific elements of a script and its execution context. Fingerprints can be easily enriched with new elements, if needed, to enhance the proposed method’s robustness. The list can be populated by the website’s administrators or a trusted third party. To verify our approach, we have developed a prototype and tested it successfully against an extensive array of attacks that were performed on more than 50 real-world vulnerable web applications. We measured the browsing performance overhead of the proposed solution on eight websites that make heavy use of JavaScript. Our mechanism imposed an average overhead of 11.1% on the execution time of the JavaScript engine. When measured as part of a full browsing session, and for all tested websites, the overhead introduced by our layer was less than 0.05%. When script elements are altered or new scripts are added on the server side, a new fingerprint generation phase is required. To examine the temporal aspect of contextual fingerprints, we performed a short-term and a long-term experiment based on the same websites. The former, showed that in a short period of time (10 days), for seven of eight websites, the majority of valid fingerprints stay the same (more than 92% on average). The latter, though, indicated that, in the long run, the number of fingerprints that do not change is reduced. Both experiments can be seen as one of the first attempts to study the feasibility of a whitelisting approach for the web.

2017-05-17
Nicolay, Jens, Spruyt, Valentijn, De Roover, Coen.  2016.  Static Detection of User-specified Security Vulnerabilities in Client-side JavaScript. Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for Security. :3–13.

Program defects tend to surface late in the development of programs, and they are hard to detect. Security vulnerabilities are particularly important defects to detect. They may cause sensitive information to be leaked or the system on which the program is executed to be compromised. Existing approaches that use static analysis to detect security vulnerabilities in source code are often limited to a predetermined set of encoded security vulnerabilities. Although these approaches support a decent number of vulnerabilities by default, they cannot be configured for detecting vulnerabilities that are specific to the application domain of the analyzed program. In this paper we present JS-QL, a framework for detecting user-specified security vulnerabilities in JavaScript applications statically. The framework makes use of an internal domain-specific query language hosted by JavaScript. JS-QL queries are based on regular path expressions, enabling users to express queries over a flow graph in a declarative way. The flow graph represents the run-time behavior of a program and is computed by a static analysis. We evaluate JS-QL by expressing 9 security vulnerabilities supported by existing work and comparing the resulting specifications. We conclude that the combination of static analysis and regular path expressions lends itself well to the detection of user-specified security vulnerabilities.

2017-04-20
Ambedkar, M. Dayal, Ambedkar, N. S., Raw, R. S..  2016.  A comprehensive inspection of cross site scripting attack. 2016 International Conference on Computing, Communication and Automation (ICCCA). :497–502.
Cross Site Scripting attack (XSS) is the computer security threat which allows the attacker to get access over the sensitive information, when the javaScript, VBScript, ActiveX, Flash or HTML which is embedded in the malicious XSS link gets executed. In this paper, we authors have discussed about various impacts of XSS, types of XSS, checked whether the site is vulnerable towards the XSS or not, discussed about various tools for examining the XSS vulnerability and summarizes the preventive measures against XSS.
Mhana, Samer Attallah, Din, Jamilah Binti, Atan, Rodziah Binti.  2016.  Automatic generation of Content Security Policy to mitigate cross site scripting. 2016 2nd International Conference on Science in Information Technology (ICSITech). :324–328.

Content Security Policy (CSP) is powerful client-side security layer that helps in mitigating and detecting wide ranges of Web attacks including cross-site scripting (XSS). However, utilizing CSP by site administrators is a fallible process and may require significant changes in web application code. In this paper, we propose an approach to help site administers to overcome these limitations in order to utilize the full benefits of CSP mechanism which leads to more immune sites from XSS. The algorithm is implemented as a plugin. It does not interfere with the Web application original code. The plugin can be “installed” on any other web application with minimum efforts. The algorithm can be implemented as part of Web Server layer, not as part of the business logic layer. It can be extended to support generating CSP for contents that are modified by JavaScript after loading. Current approach inspects the static contents of URLs.

Rao, K. S., Jain, N., Limaje, N., Gupta, A., Jain, M., Menezes, B..  2016.  Two for the price of one: A combined browser defense against XSS and clickjacking. 2016 International Conference on Computing, Networking and Communications (ICNC). :1–6.
Cross Site Scripting (XSS) and clickjacking have been ranked among the top web application threats in recent times. This paper introduces XBuster - our client-side defence against XSS, implemented as an extension to the Mozilla Firefox browser. XBuster splits each HTTP request parameter into HTML and JavaScript contexts and stores them separately. It searches for both contexts in the HTTP response and handles each context type differently. It defends against all XSS attack vectors including partial script injection, attribute injection and HTML injection. Also, existing XSS filters may inadvertently disable frame busting code used in web pages as a defence against clickjacking. However, XBuster has been designed to detect and neutralize such attempts.
2015-05-05
Wenmin Xiao, Jianhua Sun, Hao Chen, Xianghua Xu.  2014.  Preventing Client Side XSS with Rewrite Based Dynamic Information Flow. Parallel Architectures, Algorithms and Programming (PAAP), 2014 Sixth International Symposium on. :238-243.

This paper presents the design and implementation of an information flow tracking framework based on code rewrite to prevent sensitive information leaks in browsers, combining the ideas of taint and information flow analysis. Our system has two main processes. First, it abstracts the semantic of JavaScript code and converts it to a general form of intermediate representation on the basis of JavaScript abstract syntax tree. Second, the abstract intermediate representation is implemented as a special taint engine to analyze tainted information flow. Our approach can ensure fine-grained isolation for both confidentiality and integrity of information. We have implemented a proof-of-concept prototype, named JSTFlow, and have deployed it as a browser proxy to rewrite web applications at runtime. The experiment results show that JSTFlow can guarantee the security of sensitive data and detect XSS attacks with about 3x performance overhead. Because it does not involve any modifications to the target system, our system is readily deployable in practice.
 

Mewara, B., Bairwa, S., Gajrani, J..  2014.  Browser's defenses against reflected cross-site scripting attacks. Signal Propagation and Computer Technology (ICSPCT), 2014 International Conference on. :662-667.

Due to the frequent usage of online web applications for various day-to-day activities, web applications are becoming most suitable target for attackers. Cross-Site Scripting also known as XSS attack, one of the most prominent defacing web based attack which can lead to compromise of whole browser rather than just the actual web application, from which attack has originated. Securing web applications using server side solutions is not profitable as developers are not necessarily security aware. Therefore, browser vendors have tried to evolve client side filters to defend against these attacks. This paper shows that even the foremost prevailing XSS filters deployed by latest versions of most widely used web browsers do not provide appropriate defense. We evaluate three browsers - Internet Explorer 11, Google Chrome 32, and Mozilla Firefox 27 for reflected XSS attack against different type of vulnerabilities. We find that none of above is completely able to defend against all possible type of reflected XSS vulnerabilities. Further, we evaluate Firefox after installing an add-on named XSS-Me, which is widely used for testing the reflected XSS vulnerabilities. Experimental results show that this client side solution can shield against greater percentage of vulnerabilities than other browsers. It is witnessed to be more propitious if this add-on is integrated inside the browser instead being enforced as an extension.