Visible to the public Biblio

Filters: Keyword is differential privacy data publishing algorithm  [Clear All Filters]
2021-01-28
Li, Y., Chen, J., Li, Q., Liu, A..  2020.  Differential Privacy Algorithm Based on Personalized Anonymity. 2020 5th IEEE International Conference on Big Data Analytics (ICBDA). :260—267.

The existing anonymized differential privacy model adopts a unified anonymity method, ignoring the difference of personal privacy, which may lead to the problem of excessive or insufficient protection of the original data [1]. Therefore, this paper proposes a personalized k-anonymity model for tuples (PKA) and proposes a differential privacy data publishing algorithm (DPPA) based on personalized anonymity, firstly based on the tuple personality factor set by the user in the original data set. The values are classified and the corresponding privacy protection relevance is calculated. Then according to the tuple personality factor classification value, the data set is clustered by clustering method with different anonymity, and the quasi-identifier attribute of each cluster is aggregated and noise-added to realize anonymized differential privacy; finally merge the subset to get the data set that meets the release requirements. In this paper, the correctness of the algorithm is analyzed theoretically, and the feasibility and effectiveness of the proposed algorithm are verified by comparison with similar algorithms.