Biblio
The root cause of cross-site scripting(XSS) attack is that the JavaScript engine can't distinguish between the JavaScript code in Web application and the JavaScript code injected by attackers. Moving Target Defense (MTD) is a novel technique that aim to defeat attacks by frequently changing the system configuration so that attackers can't catch the status of the system. This paper describes the design and implement of a XSS defense method based on Moving Target Defense technology. This method adds a random attribute to each unsafe element in Web application to distinguish between the JavaScript code in Web application and the JavaScript code injected by attackers and uses a security check function to verify the random attribute, if there is no random attribute or the random attribute value is not correct in a HTML (Hypertext Markup Language) element, the execution of JavaScript code will be prevented. The experiment results show that the method can effectively prevent XSS attacks and have little impact on the system performance.
In this paper, we examine the recent trend to- wards in-browser mining of cryptocurrencies; in particular, the mining of Monero through Coinhive and similar code- bases. In this model, a user visiting a website will download a JavaScript code that executes client-side in her browser, mines a cryptocurrency - typically without her consent or knowledge - and pays out the seigniorage to the website. Websites may consciously employ this as an alternative or to supplement advertisement revenue, may offer premium content in exchange for mining, or may be unwittingly serving the code as a result of a breach (in which case the seigniorage is collected by the attacker). The cryptocurrency Monero is preferred seemingly for its unfriendliness to large-scale ASIC mining that would drive browser-based efforts out of the market, as well as for its purported privacy features. In this paper, we survey this landscape, conduct some measurements to establish its prevalence and profitability, outline an ethical framework for considering whether it should be classified as an attack or business opportunity, and make suggestions for the detection, mitigation and/or prevention of browser-based mining for non- consenting users.
This paper presents the design and implementation of an information flow tracking framework based on code rewrite to prevent sensitive information leaks in browsers, combining the ideas of taint and information flow analysis. Our system has two main processes. First, it abstracts the semantic of JavaScript code and converts it to a general form of intermediate representation on the basis of JavaScript abstract syntax tree. Second, the abstract intermediate representation is implemented as a special taint engine to analyze tainted information flow. Our approach can ensure fine-grained isolation for both confidentiality and integrity of information. We have implemented a proof-of-concept prototype, named JSTFlow, and have deployed it as a browser proxy to rewrite web applications at runtime. The experiment results show that JSTFlow can guarantee the security of sensitive data and detect XSS attacks with about 3x performance overhead. Because it does not involve any modifications to the target system, our system is readily deployable in practice.