Visible to the public Biblio

Filters: Keyword is sensitive information leaks  [Clear All Filters]
2018-01-10
Alzhrani, K., Rudd, E. M., Chow, C. E., Boult, T. E..  2017.  Automated U.S diplomatic cables security classification: Topic model pruning vs. classification based on clusters. 2017 IEEE International Symposium on Technologies for Homeland Security (HST). :1–6.
The U.S Government has been the target for cyberattacks from all over the world. Just recently, former President Obama accused the Russian government of the leaking emails to Wikileaks and declared that the U.S. might be forced to respond. While Russia denied involvement, it is clear that the U.S. has to take some defensive measures to protect its data infrastructure. Insider threats have been the cause of other sensitive information leaks too, including the infamous Edward Snowden incident. Most of the recent leaks were in the form of text. Due to the nature of text data, security classifications are assigned manually. In an adversarial environment, insiders can leak texts through E-mail, printers, or any untrusted channels. The optimal defense is to automatically detect the unstructured text security class and enforce the appropriate protection mechanism without degrading services or daily tasks. Unfortunately, existing Data Leak Prevention (DLP) systems are not well suited for detecting unstructured texts. In this paper, we compare two recent approaches in the literature for text security classification, evaluating them on actual sensitive text data from the WikiLeaks dataset.
2015-05-05
Wenmin Xiao, Jianhua Sun, Hao Chen, Xianghua Xu.  2014.  Preventing Client Side XSS with Rewrite Based Dynamic Information Flow. Parallel Architectures, Algorithms and Programming (PAAP), 2014 Sixth International Symposium on. :238-243.

This paper presents the design and implementation of an information flow tracking framework based on code rewrite to prevent sensitive information leaks in browsers, combining the ideas of taint and information flow analysis. Our system has two main processes. First, it abstracts the semantic of JavaScript code and converts it to a general form of intermediate representation on the basis of JavaScript abstract syntax tree. Second, the abstract intermediate representation is implemented as a special taint engine to analyze tainted information flow. Our approach can ensure fine-grained isolation for both confidentiality and integrity of information. We have implemented a proof-of-concept prototype, named JSTFlow, and have deployed it as a browser proxy to rewrite web applications at runtime. The experiment results show that JSTFlow can guarantee the security of sensitive data and detect XSS attacks with about 3x performance overhead. Because it does not involve any modifications to the target system, our system is readily deployable in practice.