Visible to the public Biblio

Filters: Keyword is IDS systems  [Clear All Filters]
2021-02-23
Ratti, R., Singh, S. R., Nandi, S..  2020.  Towards implementing fast and scalable Network Intrusion Detection System using Entropy based Discretization Technique. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.

With the advent of networking technologies and increasing network attacks, Intrusion Detection systems are apparently needed to stop attacks and malicious activities. Various frameworks and techniques have been developed to solve the problem of intrusion detection, still there is need for new frameworks as per the challenging scenario of enormous scale in data size and nature of attacks. Current IDS systems pose challenges on the throughput to work with high speed networks. In this paper we address the issue of high computational overhead of anomaly based IDS and propose the solution using discretization as a data preprocessing step which can drastically reduce the computation overhead. We propose method to provide near real time detection of attacks using only basic flow level features that can easily be extracted from network packets.

2020-07-27
Sandosh, S., Govindasamy, V., Akila, G., Deepasangavy, K., FemidhaBegam, S., Sowmiya, B..  2019.  A Progressive Intrusion Detection System through Event Processing: Challenges and Motivation. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). :1–7.
In this contemporary world, working on internet is a crucial task owing to the security threats in the network like intrusions, injections etc. To recognize and reduce these system attacks, analysts and academicians have introduced Intrusion Detection Systems (IDSs) with the various standards and applications. There are different types of Intrusion Detection Systems (IDS) arise to solve the attacks in various environments. Though IDS is more powerful, it produces the results on the abnormal behaviours said to be attacks with false positive and false negative rates which leads to inaccurate detection rate. The other problem is that, there are more number of attacks arising simultaneously with different behaviour being detected by the IDS with high false positive rates which spoils the strength and lifetime of the system, system's efficiency and fault tolerance. Complex Event Processing (CEP) plays a vital role in handling the alerts as events in real time environment which mainly helps to recognize and reduce the redundant alerts.CEP identifies and analyses relationships between events in real time, allowing the system to proactively take efficient actions to respond to specific alerts.In this study, the tendency of Complex Event Processing (CEP) over Intrusion Detection System (IDS) which offers effective handling of the alerts received from IDS in real time and the promotion of the better detection of the attacks are discussed. The merits and challenges of CEP over IDS described in this paper helps to understand and educate the IDS systems to focus on how to tackle the dynamic attacks and its alerts in real time.
2015-05-06
Sayed, B., Traore, I..  2014.  Protection against Web 2.0 Client-Side Web Attacks Using Information Flow Control. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :261-268.

The dynamic nature of the Web 2.0 and the heavy obfuscation of web-based attacks complicate the job of the traditional protection systems such as Firewalls, Anti-virus solutions, and IDS systems. It has been witnessed that using ready-made toolkits, cyber-criminals can launch sophisticated attacks such as cross-site scripting (XSS), cross-site request forgery (CSRF) and botnets to name a few. In recent years, cyber-criminals have targeted legitimate websites and social networks to inject malicious scripts that compromise the security of the visitors of such websites. This involves performing actions using the victim browser without his/her permission. This poses the need to develop effective mechanisms for protecting against Web 2.0 attacks that mainly target the end-user. In this paper, we address the above challenges from information flow control perspective by developing a framework that restricts the flow of information on the client-side to legitimate channels. The proposed model tracks sensitive information flow and prevents information leakage from happening. The proposed model when applied to the context of client-side web-based attacks is expected to provide a more secure browsing environment for the end-user.

Sayed, B., Traore, I..  2014.  Protection against Web 2.0 Client-Side Web Attacks Using Information Flow Control. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :261-268.

The dynamic nature of the Web 2.0 and the heavy obfuscation of web-based attacks complicate the job of the traditional protection systems such as Firewalls, Anti-virus solutions, and IDS systems. It has been witnessed that using ready-made toolkits, cyber-criminals can launch sophisticated attacks such as cross-site scripting (XSS), cross-site request forgery (CSRF) and botnets to name a few. In recent years, cyber-criminals have targeted legitimate websites and social networks to inject malicious scripts that compromise the security of the visitors of such websites. This involves performing actions using the victim browser without his/her permission. This poses the need to develop effective mechanisms for protecting against Web 2.0 attacks that mainly target the end-user. In this paper, we address the above challenges from information flow control perspective by developing a framework that restricts the flow of information on the client-side to legitimate channels. The proposed model tracks sensitive information flow and prevents information leakage from happening. The proposed model when applied to the context of client-side web-based attacks is expected to provide a more secure browsing environment for the end-user.

2015-05-05
Sayed, B., Traore, I..  2014.  Protection against Web 2.0 Client-Side Web Attacks Using Information Flow Control. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :261-268.

The dynamic nature of the Web 2.0 and the heavy obfuscation of web-based attacks complicate the job of the traditional protection systems such as Firewalls, Anti-virus solutions, and IDS systems. It has been witnessed that using ready-made toolkits, cyber-criminals can launch sophisticated attacks such as cross-site scripting (XSS), cross-site request forgery (CSRF) and botnets to name a few. In recent years, cyber-criminals have targeted legitimate websites and social networks to inject malicious scripts that compromise the security of the visitors of such websites. This involves performing actions using the victim browser without his/her permission. This poses the need to develop effective mechanisms for protecting against Web 2.0 attacks that mainly target the end-user. In this paper, we address the above challenges from information flow control perspective by developing a framework that restricts the flow of information on the client-side to legitimate channels. The proposed model tracks sensitive information flow and prevents information leakage from happening. The proposed model when applied to the context of client-side web-based attacks is expected to provide a more secure browsing environment for the end-user.