Visible to the public Biblio

Filters: Keyword is Circuits and systems  [Clear All Filters]
2023-01-06
Yu, Xiao, Wang, Dong, Sun, Xiaojuan, Zheng, Bingbing, Du, Yankai.  2022.  Design and Implementation of a Software Disaster Recovery Service for Cloud Computing-Based Aerospace Ground Systems. 2022 11th International Conference on Communications, Circuits and Systems (ICCCAS). :220—225.
The data centers of cloud computing-based aerospace ground systems and the businesses running on them are extremely vulnerable to man-made disasters, emergencies, and other disasters, which means security is seriously threatened. Thus, cloud centers need to provide effective disaster recovery services for software and data. However, the disaster recovery methods for current cloud centers of aerospace ground systems have long been in arrears, and the disaster tolerance and anti-destruction capability are weak. Aiming at the above problems, in this paper we design a disaster recovery service for aerospace ground systems based on cloud computing. On account of the software warehouse, this service adopts the main standby mode to achieve the backup, local disaster recovery, and remote disaster recovery of software and data. As a result, this service can timely response to the disasters, ensure the continuous running of businesses, and improve the disaster tolerance and anti-destruction capability of aerospace ground systems. Extensive simulation experiments validate the effectiveness of the disaster recovery service proposed in this paper.
2022-03-15
Cristescu, Mihai-Corneliu, Bob, Cristian.  2021.  Flexible Framework for Stimuli Redundancy Reduction in Functional Verification Using Artificial Neural Networks. 2021 International Symposium on Signals, Circuits and Systems (ISSCS). :1—4.
Within the ASIC development process, the phase of functional verification is a major bottleneck that affects the product time to market. A technique that decreases the time cost for reaching functional coverage closure is reducing the stimuli redundancy during the test regressions. This paper addresses such a solution and presents a novel, efficient, and scalable implementation that harnesses the power of artificial neural networks. This article outlines the concept strategy, highlights the framework structure, lists the experimental results, and underlines future research directions.
2022-03-14
Obeidat, Nawar, Purdy, Carla.  2021.  Improving Security in SCADA Systems through Model-checking with TLA+. 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS). :832—835.
In today’s world, Supervisory Control and Data Acquisition (SCADA) networks have many critical tasks, including managing infrastructure such as power, water, and sewage systems, and controlling automated manufacturing and transportation systems. Securing these systems is crucial. Here we describe a project to design security into an example system using formal specifications. Our example system is a component in a cybersecurity testbed at the University of Cincinnati, which was described in previous work. We also show how a design flaw can be discovered and corrected early in the system development process.
2021-11-29
Gwee, Bah-Hwee.  2020.  Hardware Attack and Assurance with Machine Learning: A Security Threat to Circuits and Systems. 2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). :i–i.
Summary form only given, as follows. The complete presentation was not made available for publication as part of the conference proceedings. Banking, defence applications and cryptosystems often demand security features, including cryptography, tamper resistance, stealth, and etc., by means of hardware approaches and/or software approaches to prevent data leakages. The hardware physical attacks or commonly known as side channel attacks have been employed to extract the secret keys of the encrypted algorithms implemented in hardware devices by analyzing their physical parameters such as power dissipation, electromagnetic interference and timing information. Altered functions or unauthorized modules may be added to the circuit design during the shipping and manufacturing process, bringing in security threats to the deployed systems. In this presentation, we will discuss hardware assurance from both device level and circuit level, and present how machine learning techniques can be utilized. At the device level, we will first provide an overview of the different cryptography algorithms and present the side channel attacks, particularly the powerful Correlation Power Analysis (CPA) and Correlation Electromagnetic Analysis (CEMA) with a leakage model that can be used to reveal the secret keys of the cryptosystems. We will then discuss several countermeasure techniques and present how highly secured microchips can be designed based on these techniques. At the circuit level, we will provide an overview of manufactured IC circuit analysis through invasive IC delayering and imaging. We then present several machine learning techniques that can be efficiently applied to the retrieval of circuit contact points and connections for further netlist/functional analysis.
2021-02-08
Pradeeksha, A. Shirley, Sathyapriya, S. Sridevi.  2020.  Design and Implementation of DNA Based Cryptographic Algorithm. 2020 5th International Conference on Devices, Circuits and Systems (ICDCS). :299–302.
The intensity of DNA figuring will reinforce the current security on frameworks by opening up another probability of a half and half cryptographic framework. Here, we are exhibiting the DNA S-box for actualizing cryptographic algorithm. The DNA based S-Box is designed using vivado software and implemented using Artix-7 device. The main aim is to design the DNA based S-box to increase the security. Also pipelining and parallelism techniques are to be implement in future to increase the speed.