Biblio
The Principle of Least Privilege is a security objective of granting users only those accesses they need to perform their duties. Creating least privilege policies in the cloud environment with many diverse services, each with unique privilege sets, is significantly more challenging than policy creation previously studied in other environments. Such security policies are always imperfect and must balance between the security risk of granting over-privilege and the effort to correct for under-privilege. In this paper, we formally define the problem of balancing between over-privilege and under-privilege as the Privilege Error Minimization Problem (PEMP) and present a method for quantitatively scoring security policies. We design and compare three algorithms for automatically generating policies: a naive algorithm, an unsupervised learning algorithm, and a supervised learning algorithm. We present the results of evaluating these three policy generation algorithms on a real-world dataset consisting of 5.2 million Amazon Web Service (AWS) audit log entries. The application of these methods can help create policies that balance between an organization's acceptable level of risk and effort to correct under-privilege.
In many client-facing applications, a vulnerability in any part can compromise the entire application. This paper describes the design and implementation of Passe, a system that protects a data store from unintended data leaks and unauthorized writes even in the face of application compromise. Passe automatically splits (previously shared-memory-space) applications into sandboxed processes. Passe limits communication between those components and the types of accesses each component can make to shared storage, such as a backend database. In order to limit components to their least privilege, Passe uses dynamic analysis on developer-supplied end-to-end test cases to learn data and control-flow relationships between database queries and previous query results, and it then strongly enforces those relationships. Our prototype of Passe acts as a drop-in replacement for the Django web framework. By running eleven unmodified, off-the-shelf applications in Passe, we demonstrate its ability to provide strong security guarantees-Passe correctly enforced 96% of the applications' policies-with little additional overhead. Additionally, in the web-specific setting of the prototype, we also mitigate the cross-component effects of cross-site scripting (XSS) attacks by combining browser HTML5 sandboxing techniques with our automatic component separation.