Biblio
Quantitative risk assessment is a critical first step in risk management and assured design of networked computer systems. It is challenging to evaluate the marginal probabilities of target states/conditions when using a probabilistic attack graph to represent all possible attack paths and the probabilistic cause-consequence relations among nodes. The brute force approach has the exponential complexity and the belief propagation method gives approximation when the corresponding factor graph has cycles. To improve the approximation accuracy, a region-based method is adopted, which clusters some highly dependent nodes into regions and messages are passed among regions. Experiments are conducted to compare the performance of the different methods.
This paper presents a system named SPOT to achieve high accuracy and preemptive detection of attacks. We use security logs of real-incidents that occurred over a six-year period at National Center for Supercomputing Applications (NCSA) to evaluate SPOT. Our data consists of attacks that led directly to the target system being compromised, i.e., not detected in advance, either by the security analysts or by intrusion detection systems. Our approach can detect 75 percent of attacks as early as minutes to tens of hours before attack payloads are executed.