Biblio
This work examines metrics that can be used to measure the ability of agile software development methods to meet security and privacy requirements of communications applications. Many implementations of communication protocols, including those in vehicular networks, occur within regulated environments where agile development methods are traditionally discouraged. We propose a framework and metrics to measure adherence to security, quality and software effectiveness regulations if developers desire the cost and schedule benefits of agile methods. After providing an overview of specific challenges that a regulated environment imposes on communications software development, we proceed to examine the 12 agile principles and how they relate to a regulatory environment. From this review we identify two metrics to measure performance of three key regulatory attributes of software for communications applications, and then recommend an approach of either tools, agile methods or DevOps that is best positioned to satisfy its regulated environment attributes. By considering the recommendations in this paper, managers of software-dominant communications programs in a regulated environment can gain insight into leveraging the benefits of agile methods.
This paper describes a novel aerospace electronic component risk assessment methodology and supporting virtual laboratory structure designed to augment existing supply chain management practices and aid in Microelectronics Trust Assurance. This toolkit and methodology applies structure to the unclear and evolving risk assessment problem, allowing quantification of key risks affecting both advanced and obsolete systems that rely on semiconductor technologies. The impacts of logistics & supply chain risk, technology & counterfeit risk, and faulty component risk on trusted and non-trusted procurement options are quantified. The benefits of component testing on part reliability are assessed and incorporated into counterfeit mitigation calculations. This toolkit and methodology seek to assist acquisition staff by providing actionable decision data regarding the increasing threat of counterfeit components by assessing the risks faced by systems, identifying mitigation strategies to reduce this risk, and resolving these risks through the optimal test and procurement path based on the component criticality risk tolerance of the program.
This paper describes multiple system security engineering techniques for assessing system security vulnerabilities and discusses the application of these techniques at different system maturity points. The proposed vulnerability assessment approach allows a systems engineer to identify and assess vulnerabilities early in the life cycle and to continually increase the fidelity of the vulnerability identification and assessment as the system matures.
The United States, including the Department of Defense, relies heavily on information systems and networking technologies to efficiently conduct a wide variety of missions across the globe. With the ever-increasing rate of cyber attacks, this dependency places the nation at risk of a loss of confidentiality, integrity, and availability of its critical information resources; degrading its ability to complete the mission. In this paper, we introduce the operational data classes for establishing situational awareness in cyberspace. A system effectively using our key information components will be able to provide the nation's leadership timely and accurate information to gain an understanding of the operational cyber environment to enable strategic, operational, and tactical decision-making. In doing so, we present, define and provide examples of our key classes of operational data for cyber situational awareness and present a hypothetical case study demonstrating how they must be consolidated to provide a clear and relevant picture to a commander. In addition, current organizational and technical challenges are discussed, and areas for future research are addressed.
The National Cyber Range (NCR) is an innovative Department of Defense (DoD) resource originally established by the Defense Advanced Research Projects Agency (DARPA) and now under the purview of the Test Resource Management Center (TRMC). It provides a unique environment for cyber security testing throughout the program development life cycle using unique methods to assess resiliency to advanced cyberspace security threats. This paper describes what a cyber security range is, how it might be employed, and the advantages a program manager (PM) can gain in applying the results of range events. Creating realism in a test environment isolated from the operational environment is a special challenge in cyberspace. Representing the scale and diversity of the complex DoD communications networks at a fidelity detailed enough to realistically portray current and anticipated attack strategies (e.g., Malware, distributed denial of service attacks, cross-site scripting) is complex. The NCR addresses this challenge by representing an Internet-like environment by employing a multitude of virtual machines and physical hardware augmented with traffic emulation, port/protocol/service vulnerability scanning, and data capture tools. Coupled with a structured test methodology, the PM can efficiently and effectively engage with the Range to gain cyberspace resiliency insights. The NCR capability, when applied, allows the DoD to incorporate cyber security early to avoid high cost integration at the end of the development life cycle. This paper provides an overview of the resources of the NCR which may be especially helpful for DoD PMs to find the best approach for testing the cyberspace resiliency of their systems under development.