Visible to the public Biblio

Filters: Keyword is generalized likelihood ratio CuSum  [Clear All Filters]
2021-02-16
Lau, T. S., Tay, W. Peng.  2020.  Privacy-Aware Quickest Change Detection. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :5999—6003.
This paper considers the problem of the quickest detection of a change in distribution while taking privacy considerations into account. Our goal is to sanitize the signal to satisfy information privacy requirements while being able to detect a change quickly. We formulate the privacy-aware quickest change detection (QCD) problem by including a privacy constraint to Lorden's minimax formulation. We show that the Generalized Likelihood Ratio (GLR) CuSum achieves asymptotic optimality with a properly designed sanitization channel and formulate the design of this sanitization channel as an optimization problem. For computational tractability, a continuous relaxation for the discrete counting constraint is proposed and the augmented Lagrangian method is applied to obtain locally optimal solutions.