Biblio
Filters: Keyword is Communication cables [Clear All Filters]
Controller of public vehicles and traffic lights to speed up the response time to emergencies. 2021 XVII International Engineering Congress (CONIIN). :1–6.
.
2021. Frequently emergency services are required nationally and globally, in Mexico during 2020 of the 16,22,879 calls made to 911, statistics reveal that 58.43% were about security, 16.57% assistance, 13.49% medical, 6.29% civil protection, among others. However, the constant traffic of cities generates delays in the time of arrival to medical, military or civil protection services, wasting time that can be critical in an emergency. The objective is to create a connection between the road infrastructure (traffic lights) and emergency vehicles to reduce waiting time as a vehicle on a mission passes through a traffic light with Controller Area Network CAN controller to modify the color and give way to the emergency vehicle that will send signals to the traffic light controller through a controller located in the car. For this, the Controller Area Network Flexible Data (CAN-FD) controllers will be used in traffic lights since it is capable of synchronizing data in the same bus or cable to avoid that two messages arrive at the same time, which could end in car accidents if they are not it respects a hierarchy and the CANblue ll controller that wirelessly connects devices (vehicle and traffic light) at a speed of 1 Mbit / s to avoid delays in data exchange taking into account the high speeds that a car can acquire. It is intended to use the CAN controller for the development of improvements in response times in high-speed data exchange in cities with high traffic flow. As a result of the use of CAN controllers, a better data flow and interconnection is obtained.
LANTENNA: Exfiltrating Data from Air-Gapped Networks via Ethernet Cables Emission. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :745–754.
.
2021. In this paper we present LANTENNA - a new type of an electromagnetic attack allowing adversaries to leak sensitive data from isolated, air-gapped networks. Malicious code in air-gapped computers gathers sensitive data and then encodes it over radio waves emanated from Ethernet cables. A nearby receiving device can intercept the signals wirelessly, decodes the data and sends it to the attacker. We discuss the exiltration techniques, examine the covert channel characteristics, and provide implementation details. Notably, the malicious code can run in an ordinary user mode process, and can successfully operates from within a virtual machine. We evaluate the covert channel in different scenarios and present a set of of countermeasures. Our experiments show that with the LANTENNA attack, data can be exfiltrated from air-gapped computers to a distance of several meters away.
Explainability in threat assessment with evidential networks and sensitivity spaces. 2020 IEEE 23rd International Conference on Information Fusion (FUSION). :1—8.
.
2020. One of the main threats to the underwater communication cables identified in the recent years is possible tampering or damage by malicious actors. This paper proposes a solution with explanation abilities to detect and investigate this kind of threat within the evidence theory framework. The reasoning scheme implements the traditional “opportunity-capability-intent” threat model to assess a degree to which a given vessel may pose a threat. The scenario discussed considers a variety of possible pieces of information available from different sources. A source quality model is used to reason with the partially reliable sources and the impact of this meta-information on the overall assessment is illustrated. Examples of uncertain relationships between the relevant variables are modelled and the constructed model is used to investigate the probability of threat of four vessels of different types. One of these cases is discussed in more detail to demonstrate the explanation abilities. Explanations about inference are provided thanks to sensitivity spaces in which the impact of the different pieces of information on the reasoning are compared.