Biblio
Filters: Keyword is future attacks [Clear All Filters]
Distributed DDoS Defense:A collaborative Approach at Internet Scale. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1–6.
.
2020. Distributed large-scale cyber attacks targeting the availability of computing and network resources still remain a serious threat. To limit the effects caused by those attacks and to provide a proactive defense, mitigation should move to the networks of Internet Service Providers (ISPs). In this context, this thesis focuses on a development of a collaborative, automated approach to mitigate the effects of Distributed Denial of Service (DDoS) attacks at Internet Scale. This thesis has the following contributions: i) a systematic and multifaceted study on mitigation of large-scale cyber attacks at ISPs. ii) A detailed guidance selecting an exchange format and protocol suitable to use to disseminate threat information. iii) To overcome the shortcomings of missing flow-based interoperability of current exchange formats, a development of the exchange format Flow-based Event Exchange Format (FLEX). iv) A communication process to facilitate the automated defense in response to ongoing network-based attacks, v) a model to select and perform a semi-automatic deployment of suitable response actions. vi) An investigation of the effectiveness of the defense techniques moving-target using Software Defined Networking (SDN) and their applicability in context of large-scale cyber attacks and the networks of ISPs. Finally, a trust model that determines a trust and a knowledge level of a security event to deploy semi-automated remediations and facilitate the dissemination of security event information using the exchange format FLEX in context of ISP networks.
SEADer++ v2: Detecting Social Engineering Attacks using Natural Language Processing and Machine Learning. 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA). :1–6.
.
2020. Social engineering attacks are well known attacks in the cyberspace and relatively easy to try and implement because no technical knowledge is required. In various online environments such as business domains where customers talk through a chat service with employees or in social networks potential hackers can try to manipulate other people by employing social attacks against them to gain information that will benefit them in future attacks. Thus, we have used a number of natural language processing steps and a machine learning algorithm to identify potential attacks. The proposed method has been tested on a semi-synthetic dataset and it is shown to be both practical and effective.