Visible to the public Biblio

Filters: Keyword is explainable artificial intelligence methods  [Clear All Filters]
2021-03-01
Taylor, E., Shekhar, S., Taylor, G. W..  2020.  Response Time Analysis for Explainability of Visual Processing in CNNs. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :1555–1558.
Explainable artificial intelligence (XAI) methods rely on access to model architecture and parameters that is not always feasible for most users, practitioners, and regulators. Inspired by cognitive psychology, we present a case for response times (RTs) as a technique for XAI. RTs are observable without access to the model. Moreover, dynamic inference models performing conditional computation generate variable RTs for visual learning tasks depending on hierarchical representations. We show that MSDNet, a conditional computation model with early-exit architecture, exhibits slower RT for images with more complex features in the ObjectNet test set, as well as the human phenomenon of scene grammar, where object recognition depends on intrascene object-object relationships. These results cast light on MSDNet's feature space without opening the black box and illustrate the promise of RT methods for XAI.
Kuppa, A., Le-Khac, N.-A..  2020.  Black Box Attacks on Explainable Artificial Intelligence(XAI) methods in Cyber Security. 2020 International Joint Conference on Neural Networks (IJCNN). :1–8.

Cybersecurity community is slowly leveraging Machine Learning (ML) to combat ever evolving threats. One of the biggest drivers for successful adoption of these models is how well domain experts and users are able to understand and trust their functionality. As these black-box models are being employed to make important predictions, the demand for transparency and explainability is increasing from the stakeholders.Explanations supporting the output of ML models are crucial in cyber security, where experts require far more information from the model than a simple binary output for their analysis. Recent approaches in the literature have focused on three different areas: (a) creating and improving explainability methods which help users better understand the internal workings of ML models and their outputs; (b) attacks on interpreters in white box setting; (c) defining the exact properties and metrics of the explanations generated by models. However, they have not covered, the security properties and threat models relevant to cybersecurity domain, and attacks on explainable models in black box settings.In this paper, we bridge this gap by proposing a taxonomy for Explainable Artificial Intelligence (XAI) methods, covering various security properties and threat models relevant to cyber security domain. We design a novel black box attack for analyzing the consistency, correctness and confidence security properties of gradient based XAI methods. We validate our proposed system on 3 security-relevant data-sets and models, and demonstrate that the method achieves attacker's goal of misleading both the classifier and explanation report and, only explainability method without affecting the classifier output. Our evaluation of the proposed approach shows promising results and can help in designing secure and robust XAI methods.