Visible to the public Biblio

Filters: Keyword is BO  [Clear All Filters]
2015-05-05
Tunc, C., Fargo, F., Al-Nashif, Y., Hariri, S., Hughes, J..  2014.  Autonomic Resilient Cloud Management (ARCM) Design and Evaluation. Cloud and Autonomic Computing (ICCAC), 2014 International Conference on. :44-49.

Cloud Computing is emerging as a new paradigm that aims delivering computing as a utility. For the cloud computing paradigm to be fully adopted and effectively used, it is critical that the security mechanisms are robust and resilient to faults and attacks. Securing cloud systems is extremely complex due to the many interdependent tasks such as application layer firewalls, alert monitoring and analysis, source code analysis, and user identity management. It is strongly believed that we cannot build cloud services that are immune to attacks. Resiliency to attacks is becoming an important approach to address cyber-attacks and mitigate their impacts. Resiliency for mission critical systems is demanded higher. In this paper, we present a methodology to develop an Autonomic Resilient Cloud Management (ARCM) based on moving target defense, cloud service Behavior Obfuscation (BO), and autonomic computing. By continuously and randomly changing the cloud execution environments and platform types, it will be difficult especially for insider attackers to figure out the current execution environment and their existing vulnerabilities, thus allowing the system to evade attacks. We show how to apply the ARCM to one class of applications, Map/Reduce, and evaluate its performance and overhead.