Visible to the public Biblio

Filters: Keyword is Cowrie  [Clear All Filters]
2022-06-09
Thom, Jay, Shah, Yash, Sengupta, Shamik.  2021.  Correlation of Cyber Threat Intelligence Data Across Global Honeypots. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :0766–0772.
Today's global network is filled with attackers both live and automated seeking to identify and compromise vulnerable devices, with initial scanning and attack activity occurring within minutes or even seconds of being connected to the Internet. To better understand these events, honeypots can be deployed to monitor and log activity by simulating actual Internet facing services such as SSH, Telnet, HTTP, or FTP, and malicious activity can be logged as attempts are made to compromise them. In this study six multi-service honeypots are deployed in locations around the globe to collect and catalog traffic over a period of several months between March and December, 2020. Analysis is performed on various characteristics including source and destination IP addresses and port numbers, usernames and passwords utilized, commands executed, and types of files downloaded. In addition, Cowrie log data is restructured to observe individual attacker sessions, study command sequences, and monitor tunneling activity. This data is then correlated across honeypots to compare attack and traffic patterns with the goal of learning more about the tactics being employed. By gathering data gathered from geographically separate zones over a long period of time a greater understanding can be developed regarding attacker intent and methodology, can aid in the development of effective approaches to identifying malicious behavior and attack sources, and can serve as a cyber-threat intelligence feed.
Saputro, Elang Dwi, Purwanto, Yudha, Ruriawan, Muhammad Faris.  2021.  Medium Interaction Honeypot Infrastructure on The Internet of Things. 2020 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS). :98–102.
New technologies from day to day are submitted with many vulnerabilities that can make data exploitation. Nowadays, IoT is a target for Cybercrime attacks as it is one of the popular platforms in the century. This research address the IoT security problem by carried a medium-interaction honeypot. Honeypot is one of the solutions that can be done because it is a system feed for the introduction of attacks and fraudulent devices. This research has created a medium interaction honeypot using Cowrie, which is used to maintain the Internet of Things device from malware attacks or even attack patterns and collect information about the attacker's machine. From the result analysis, the honeypot can record all trials and attack activities, with CPU loads averagely below 6,3%.
Başer, Melike, Güven, Ebu Yusuf, Aydın, Muhammed Ali.  2021.  SSH and Telnet Protocols Attack Analysis Using Honeypot Technique: Analysis of SSH AND ℡NET Honeypot. 2021 6th International Conference on Computer Science and Engineering (UBMK). :806–811.
Generally, the defense measures taken against new cyber-attack methods are insufficient for cybersecurity risk management. Contrary to classical attack methods, the existence of undiscovered attack types called’ zero-day attacks’ can invalidate the actions taken. It is possible with honeypot systems to implement new security measures by recording the attacker’s behavior. The purpose of the honeypot is to learn about the methods and tools used by the attacker or malicious activity. In particular, it allows us to discover zero-day attack types and develop new defense methods for them. Attackers have made protocols such as SSH (Secure Shell) and Telnet, which are widely used for remote access to devices, primary targets. In this study, SSHTelnet honeypot was established using Cowrie software. Attackers attempted to connect, and attackers record their activity after providing access. These collected attacker log records and files uploaded to the system are published on Github to other researchers1. We shared the observations and analysis results of attacks on SSH and Telnet protocols with honeypot.
2021-12-21
Ba\c ser, Melike, Güven, Ebu Yusuf, Aydın, Muhammed Ali.  2021.  SSH and Telnet Protocols Attack Analysis Using Honeypot Technique : *Analysis of SSH AND ℡NET Honeypot. 2021 6th International Conference on Computer Science and Engineering (UBMK). :806–811.
Generally, the defense measures taken against new cyber-attack methods are insufficient for cybersecurity risk management. Contrary to classical attack methods, the existence of undiscovered attack types called' zero-day attacks' can invalidate the actions taken. It is possible with honeypot systems to implement new security measures by recording the attacker's behavior. The purpose of the honeypot is to learn about the methods and tools used by the attacker or malicious activity. In particular, it allows us to discover zero-day attack types and develop new defense methods for them. Attackers have made protocols such as SSH (Secure Shell) and Telnet, which are widely used for remote access to devices, primary targets. In this study, SSHTelnet honeypot was established using Cowrie software. Attackers attempted to connect, and attackers record their activity after providing access. These collected attacker log records and files uploaded to the system are published on Github to other researchers1. We shared the observations and analysis results of attacks on SSH and Telnet protocols with honeypot.
2021-03-09
Lingenfelter, B., Vakilinia, I., Sengupta, S..  2020.  Analyzing Variation Among IoT Botnets Using Medium Interaction Honeypots. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). :0761—0767.

Through analysis of sessions in which files were created and downloaded on three Cowrie SSH/Telnet honeypots, we find that IoT botnets are by far the most common source of malware on connected systems with weak credentials. We detail our honeypot configuration and describe a simple method for listing near-identical malicious login sessions using edit distance. A large number of IoT botnets attack our honeypots, but the malicious sessions which download botnet software to the honeypot are almost all nearly identical to one of two common attack patterns. It is apparent that the Mirai worm is still the dominant botnet software, but has been expanded and modified by other hackers. We also find that the same loader devices deploy several different botnet malware strains to the honeypot over the course of a 40 day period, suggesting multiple botnet deployments from the same source. We conclude that Mirai continues to be adapted but can be effectively tracked using medium interaction honeypots such as Cowrie.