Visible to the public Biblio

Filters: Keyword is generic system  [Clear All Filters]
2022-06-30
Jadhav, Mohit, Kulkarni, Nupur, Walhekar, Omkar.  2021.  Doodling Based CAPTCHA Authentication System. 2021 Asian Conference on Innovation in Technology (ASIANCON). :1—5.
CAPTCHA (Completely Automated Public Turing Test to tell Computers and Humans Apart) is a widely used challenge-measures to distinguish humans and computer automated programs apart. Several existing CAPTCHAs are reliable for normal users, whereas visually impaired users face a lot of problems with the CAPTCHA authentication process. CAPTCHAs such as Google reCAPTCHA alternatively provides audio CAPTCHA, but many users find it difficult to decipher due to noise, language barrier, and accent of the audio of the CAPTCHA. Existing CAPTCHA systems lack user satisfaction on smartphones thus limiting its use. Our proposed system potentially solves the problem faced by visually impaired users during the process of CAPTCHA authentication. Also, our system makes the authentication process generic across users as well as platforms.
2021-03-09
Badawi, E., Jourdan, G.-V., Bochmann, G., Onut, I.-V..  2020.  An Automatic Detection and Analysis of the Bitcoin Generator Scam. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :407—416.

We investigate what we call the "Bitcoin Generator Scam" (BGS), a simple system in which the scammers promise to "generate" new bitcoins using the ones that were sent to them. A typical offer will suggest that, for a small fee, one could receive within minutes twice the amount of bitcoins submitted. BGS is clearly not a very sophisticated attack. The modus operandi is simply to put up some web page on which to find the address to send the money and wait for the payback. The pages are then indexed by search engines, and ready to find for victims looking for free bitcoins. We describe here a generic system to find and analyze scams such as BGS. We have trained a classifier to detect these pages, and we have a crawler searching for instances using a series of search engines. We then monitor the instances that we find to trace payments and bitcoin addresses that are being used over time. Unlike most bitcoin-based scam monitoring systems, we do not rely on analyzing transactions on the blockchain to find scam instances. Instead, we proactively find these instances through the web pages advertising the scam. Thus our system is able to find addresses with very few transactions, or even none at all. Indeed, over half of the addresses that have eventually received funds were detected before receiving any transactions. The data for this paper was collected over four months, from November 2019 to February 2020. We have found more than 1,300 addresses directly associated with the scam, hosted on over 500 domains. Overall, these addresses have received (at least) over 5 million USD to the scam, with an average of 47.3 USD per transaction.