Visible to the public Biblio

Filters: Keyword is Packed Malware  [Clear All Filters]
2022-02-07
Gülmez, Sibel, Sogukpinar, Ibrahim.  2021.  Graph-Based Malware Detection Using Opcode Sequences. 2021 9th International Symposium on Digital Forensics and Security (ISDFS). :1–5.
The impact of malware grows for IT (information technology) systems day by day. The number, the complexity, and the cost of them increase rapidly. While researchers are developing new and better detection algorithms, attackers are also evolving malware to fail the current detection techniques. Therefore malware detection becomes one of the most challenging tasks in cyber security. To increase the performance of the detection techniques, researchers benefit from different approaches. But some of them might cost a lot both in time and hardware resources. This situation puts forward fast and cheap detection methods. In this context, static analysis provides these utilities but it is important to keep detection accuracy high while reducing resource consumption. Opcodes (operational codes) are commonly used in static analysis but sometimes feature extraction from opcodes might be difficult since an opcode sequence might have a great length. Furthermore, most of the malware developers use obfuscation and encryption techniques to avoid detection methods based on static analysis. This kind of malware is called packed malware and according to common belief, packed malware should be either unpacked or analyzed dynamically in order to detect them. In this study, a graph-based malware detection method has been proposed to overcome these problems. The proposed method relies on obtaining the opcode graph of every executable file in the dataset and using them for future extraction. In this way, the proposed method reaches up to 98% detection accuracy. In addition to the accuracy rate, the proposed method makes it possible to detect packed malware without the need for unpacking or dynamic analysis.
2021-03-09
Akram, B., Ogi, D..  2020.  The Making of Indicator of Compromise using Malware Reverse Engineering Techniques. 2020 International Conference on ICT for Smart Society (ICISS). CFP2013V-ART:1—6.

Malware threats often go undetected immediately, because attackers can camouflage well within the system. The users realize this after the devices stop working and cause harm for them. One way to deceive malicious content detection, malware authors use packers. Malware analysis is an activity to gain knowledge about malware. Reverse engineering is a technique used to identify and deal with new viruses or to understand malware behavior. Therefore, this technique can be the right choice for conducting malware analysis, especially for malware with packers. The results of the analysis are used as a source for making creating indicator of compromise in the YARA rule format. YARA rule is used as a component for detecting malware using the indicators obtained in the analysis process.