Visible to the public Biblio

Filters: Keyword is attack classification  [Clear All Filters]
2022-03-15
Örs, Faik Kerem, Aydın, Mustafa, Boğatarkan, Aysu, Levi, Albert.  2021.  Scalable Wi-Fi Intrusion Detection for IoT Systems. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—6.
The pervasive and resource-constrained nature of Internet of Things (IoT) devices makes them attractive to be targeted by different means of cyber threats. There are a vast amount of botnets being deployed every day that aim to increase their presence on the Internet for realizing malicious activities with the help of the compromised interconnected devices. Therefore, monitoring IoT networks using intrusion detection systems is one of the major countermeasures against such threats. In this work, we present a machine learning based Wi-Fi intrusion detection system developed specifically for IoT devices. We show that a single multi-class classifier, which operates on the encrypted data collected from the wireless data link layer, is able to detect the benign traffic and six types of IoT attacks with an overall accuracy of 96.85%. Our model is a scalable one since there is no need to train different classifiers for different IoT devices. We also present an alternative attack classifier that outperforms the attack classification model which has been developed in an existing study using the same dataset.
2015-05-05
Jiankun Hu, Pota, H.R., Song Guo.  2014.  Taxonomy of Attacks for Agent-Based Smart Grids. Parallel and Distributed Systems, IEEE Transactions on. 25:1886-1895.

Being the most important critical infrastructure in Cyber-Physical Systems (CPSs), a smart grid exhibits the complicated nature of large scale, distributed, and dynamic environment. Taxonomy of attacks is an effective tool in systematically classifying attacks and it has been placed as a top research topic in CPS by a National Science Foundation (NSG) Workshop. Most existing taxonomy of attacks in CPS are inadequate in addressing the tight coupling of cyber-physical process or/and lack systematical construction. This paper attempts to introduce taxonomy of attacks of agent-based smart grids as an effective tool to provide a structured framework. The proposed idea of introducing the structure of space-time and information flow direction, security feature, and cyber-physical causality is innovative, and it can establish a taxonomy design mechanism that can systematically construct the taxonomy of cyber attacks, which could have a potential impact on the normal operation of the agent-based smart grids. Based on the cyber-physical relationship revealed in the taxonomy, a concrete physical process based cyber attack detection scheme has been proposed. A numerical illustrative example has been provided to validate the proposed physical process based cyber detection scheme.