Biblio
Interleave division multiple access (IDMA) is a multiple-access scheme and it is expected to improve frequency efficiency. Meanwhile, the damage caused by cyberattacks is increasing yearly. To solve this problem, we propose a method of applying radio-wave encryption to IDMA based on chaos modulation to realize physical layer security and the channel coding effect. We show that the proposed scheme ensures physical layer security and obtains channel coding gain by numerical simulations.
In this work, the algorithm of increasing the information security of a communication system with Orthogonal Frequency Division Multiplexing (OFDM) was achieved by using a discrete-nonlinear Duffing system with dynamic chaos. The main idea of increasing information security is based on scrambling input information on three levels. The first one is mixing up data order, the second is scrambling data values and the final is mixing symbols at the Quadrature Amplitude Modulation (QAM) plot constellation. Each level's activities were made with the use of pseudorandom numbers set, generated by the discrete-nonlinear Duffing system with dynamic chaos.
Aiming at the problems of low accuracy and poor effect caused by the lack of data labels in most real network traffic, an optimized density peak clustering based on the improved salp swarm algorithm is proposed for traffic anomaly detection. Through the optimization of cosine decline and chaos strategy, the salp swarm algorithm not only accelerates the convergence speed, but also enhances the search ability. Moreover, we use the improved salp swarm algorithm to adaptively search the best truncation distance of density peak clustering, which avoids the subjectivity and uncertainty of manually selecting the parameters. The experimental results based on NSL-KDD dataset show that the improved salp swarm algorithm achieves faster convergence speed and higher precision, increases the average anomaly detection accuracy of 4.74% and detection rate of 6.14%, and reduces the average false positive rate of 7.38%.
Network covert timing channel(NCTC) is a process of transmitting hidden information by means of inter-packet delay (IPD) of legitimate network traffic. Their ability to evade traditional security policies makes NCTCs a grave security concern. However, a robust method that can be used to detect a large number of NCTCs is missing. In this paper, a NCTC detection method based on chaos theory and threshold secret sharing is proposed. Our method uses chaos theory to reconstruct a high-dimensional phase space from one-dimensional time series and extract the unique and stable channel traits. Then, a channel identifier is constructed using the secret reconstruction strategy from threshold secret sharing to realize the mapping of the channel features to channel identifiers. Experimental results show that the approach can detect varieties of NCTCs with a guaranteed true positive rate and greatly improve the versatility and robustness.
This paper explores using chaos-based cryptography for transmitting multimedia data, mainly speech and voice messages, over public communication channels, such as the internet. The secret message to be transmitted is first converted into a one-dimensional time series, that can be cast in a digital/binary format. The main feature of the proposed technique is mapping the two levels of every corresponding bit of the time series into different multiple chaotic orbits, using a simple encryption function. This one-to-many mapping robustifies the encryption technique and makes it resilient to crypto-analysis methods that rely on associating the energy level of the signal into two binary levels, using return map attacks. A chaotic nonautonomous Duffing oscillator is chosen to implement the suggested technique, using three different parameters that are assumed unknown at the receiver side. Synchronization between the transmitter and the receiver and reconstructing the secret message, at the receiver side, is done using a Lyapunov-based adaptive technique. Achieving stable operation, tuning the required control gains, as well as effective utilization of the bandwidth of the public communication channel are investigated. Two different case studies are presented; the first one deals with text that can be expressed as 8-bit ASCII code, while the second one corresponds to an analog acoustic signal that corresponds to the voice associated with pronouncing a short sentence. Advantages and limitation of the proposed technique are highlighted, while suggesting extensions to other multimedia signals, along with their required additional computational effort.
In this paper, the two methods for ciphering are presented and compared. The aim is to reveal the suitability of chaotic neural network approach to ciphering compared to AES cipher. The durations in seconds of both methods are presented and the two methods are compared. The results show, that the chaotic neural network is fast, suitable for ciphering of short plaintexts. AES ciphering is suitable for longer plaintexts or images and is also more reliable.
The purpose of this paper is to improve the safety of chaotic image encryption algorithm. Firstly, to achieve this goal, it put forward two improved chaotic system logistic and henon, which covered an promoted henon chaotic system with better probability density, and an 2-dimension logistic chaotic system with high Lyapunov exponents. Secondly, the chaotic key stream was generated by the new 2D logistic chaotic system and optimized henon mapping, which mixed in dynamic proportions. The conducted sequence has better randomness and higher safety for image cryptosystem. Thirdly, we proposed algorithm takes advantage of the compounded chaotic system Simulation experiment results and security analysis showed that the proposed scheme was more effective and secure. It can resist various typical attacks, has high security, satisfies the requirements of image encryption theoretical.