Visible to the public Biblio

Filters: Keyword is Wireless Network Security  [Clear All Filters]
2022-03-15
Örs, Faik Kerem, Aydın, Mustafa, Boğatarkan, Aysu, Levi, Albert.  2021.  Scalable Wi-Fi Intrusion Detection for IoT Systems. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—6.
The pervasive and resource-constrained nature of Internet of Things (IoT) devices makes them attractive to be targeted by different means of cyber threats. There are a vast amount of botnets being deployed every day that aim to increase their presence on the Internet for realizing malicious activities with the help of the compromised interconnected devices. Therefore, monitoring IoT networks using intrusion detection systems is one of the major countermeasures against such threats. In this work, we present a machine learning based Wi-Fi intrusion detection system developed specifically for IoT devices. We show that a single multi-class classifier, which operates on the encrypted data collected from the wireless data link layer, is able to detect the benign traffic and six types of IoT attacks with an overall accuracy of 96.85%. Our model is a scalable one since there is no need to train different classifiers for different IoT devices. We also present an alternative attack classifier that outperforms the attack classification model which has been developed in an existing study using the same dataset.
2020-11-02
Li, T., Ma, J., Pei, Q., Song, H., Shen, Y., Sun, C..  2019.  DAPV: Diagnosing Anomalies in MANETs Routing With Provenance and Verification. IEEE Access. 7:35302–35316.
Routing security plays an important role in the mobile ad hoc networks (MANETs). Despite many attempts to improve its security, the routing mechanism of MANETs remains vulnerable to attacks. Unlike most existing solutions that prevent the specific problems, our approach tends to detect the misbehavior and identify the anomalous nodes in MANETs automatically. The existing approaches offer support for detecting attacks or debugging in different routing phases, but many of them cannot answer the absence of an event. Besides, without considering the privacy of the nodes, these methods depend on the central control program or a third party to supervise the whole network. In this paper, we present a system called DAPV that can find single or collaborative malicious nodes and the paralyzed nodes which behave abnormally. DAPV can detect both direct and indirect attacks launched during the routing phase. To detect malicious or abnormal nodes, DAPV relies on two main techniques. First, the provenance tracking enables the hosts to deduce the expected log information of the peers with the known log entries. Second, the privacy-preserving verification uses Merkle Hash Tree to verify the logs without revealing any privacy of the nodes. We demonstrate the effectiveness of our approach by applying DAPV to three scenarios: 1) detecting injected malicious intermediated routers which commit active and passive attacks in MANETs; 2) resisting the collaborative black-hole attack of the AODV protocol, and; 3) detecting paralyzed routers in university campus networks. Our experimental results show that our approach can detect the malicious and paralyzed nodes, and the overhead of DAPV is moderate.
2020-02-17
Lin, Yun, Chang, Jie.  2019.  Improving Wireless Network Security Based On Radio Fingerprinting. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :375–379.
With the rapid development of the popularity of wireless networks, there are also increasing security threats that follow, and wireless network security issues are becoming increasingly important. Radio frequency fingerprints generated by device tolerance in wireless device transmitters have physical characteristics that are difficult to clone, and can be used for identity authentication of wireless devices. In this paper, we propose a radio frequency fingerprint extraction method based on fractional Fourier transform for transient signals. After getting the features of the signal, we use RPCA to reduce the dimension of the features, and then use KNN to classify them. The results show that when the SNR is 20dB, the recognition rate of this method is close to 100%.
2018-01-16
Ozmen, Muslum Ozgur, Yavuz, Attila A..  2017.  Low-Cost Standard Public Key Cryptography Services for Wireless IoT Systems. Proceedings of the 2017 Workshop on Internet of Things Security and Privacy. :65–70.

Internet of Things (IoT) is an integral part of application domains such as smart-home and digital healthcare. Various standard public key cryptography techniques (e.g., key exchange, public key encryption, signature) are available to provide fundamental security services for IoTs. However, despite their pervasiveness and well-proven security, they also have been shown to be highly energy costly for embedded devices. Hence, it is a critical task to improve the energy efficiency of standard cryptographic services, while preserving their desirable properties simultaneously. In this paper, we exploit synergies among various cryptographic primitives with algorithmic optimizations to substantially reduce the energy consumption of standard cryptographic techniques on embedded devices. Our contributions are: (i) We harness special precomputation techniques, which have not been considered for some important cryptographic standards to boost the performance of key exchange, integrated encryption, and hybrid constructions. (ii) We provide self-certification for these techniques to push their performance to the edge. (iii) We implemented our techniques and their counterparts on 8-bit AVR ATmega 2560 and evaluated their performance. We used microECC library and made the implementations on NIST-recommended secp192 curve, due to its standardization. Our experiments confirmed significant improvements on the battery life (up to 7x) while preserving the desirable properties of standard techniques. Moreover, to the best of our knowledge, we provide the first open-source framework including such set of optimizations on low-end devices.

2015-05-05
Vijayakumar, R., Selvakumar, K., Kulothungan, K., Kannan, A..  2014.  Prevention of multiple spoofing attacks with dynamic MAC address allocation for wireless networks. Communications and Signal Processing (ICCSP), 2014 International Conference on. :1635-1639.

In wireless networks, spoofing attack is one of the most common and challenging attacks. Due to these attacks the overall network performance would be degraded. In this paper, a medoid based clustering approach has been proposed to detect a multiple spoofing attacks in wireless networks. In addition, a Enhanced Partitioning Around Medoid (EPAM) with average silhouette has been integrated with the clustering mechanism to detect a multiple spoofing attacks with a higher accuracy rate. Based on the proposed method, the received signal strength based clustering approach has been adopted for medoid clustering for detection of attacks. In order to prevent the multiple spoofing attacks, dynamic MAC address allocation scheme using MD5 hashing technique is implemented. The experimental results shows, the proposed method can detect spoofing attacks with high accuracy rate and prevent the attacks. Thus the overall network performance is improved with high accuracy rate.