Biblio
Filters: Keyword is MFM [Clear All Filters]
Study of Nanosecond Laser Annealing on Silicon Doped Hafnium Oxide Film Crystallization and Capacitor Reliability. 2022 IEEE International Memory Workshop (IMW). :1–4.
.
2022. Study on the effect of nanosecond laser anneal (NLA) induced crystallization of ferroelectric (FE) Si-doped hafnium oxide (HSO) material is reported. The laser energy density (0.3 J/cm2 to 1.3 J/cm2) and pulse count (1.0 to 30) variations are explored as pathways for the HSO based metal-ferroelectric-metal (MFM) capacitors. The increase in energy density shows transition toward ferroelectric film crystallization monitored by the remanent polarization (2Pr) and coercive field (2Ec). The NLA conditions show maximum 2Pr (\$\textbackslashsim 24\textbackslash \textbackslashmu\textbackslashmathrmC/\textbackslashtextcmˆ2\$) comparable to the values obtained from reference rapid thermal processing (RTP). Reliability dependence in terms of fatigue (107 cycles) of MFMs on NLA versus RTP crystallization anneal is highlighted. The NLA based MFMs shows improved fatigue cycling at high fields for the low energy densities compared to an RTP anneal. The maximum fatigue cycles to breakdown shows a characteristic dependence on the laser energy density and pulse count. Leakage current and dielectric breakdown of NLA based MFMs at the transition of amorphous to crystalline film state is reported. The role of NLA based anneal on ferroelectric film crystallization and MFM stack reliability is reported in reference with conventional RTP based anneal.
ISSN: 2573-7503
Towards Automated Generation of Function Models from P IDs. 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). 1:1081—1084.
.
2020. Although function model has been widely applied to develop various operator decision support systems, the modeling process is essentially a manual work, which takes significant efforts on knowledge acquisition. It would greatly improve the efficiency of modeling if relevant information can be automatically retrieved from engineering documents. This paper investigates the possibility of automated transformation from P&IDs to a function model called MFM via AutomationML. Semantics and modeling patterns of MFM are established in AutomationML, which can be utilized to convert plant topology models into MFM models. The proposed approach is demonstrated with a small use case. Further topics for extending the study are also discussed.