Visible to the public Biblio

Filters: Keyword is mixed-criticality  [Clear All Filters]
2022-08-26
Sahoo, Siva Satyendra, Kumar, Akash, Decky, Martin, Wong, Samuel C.B., Merrett, Geoff V., Zhao, Yinyuan, Wang, Jiachen, Wang, Xiaohang, Singh, Amit Kumar.  2021.  Emergent Design Challenges for Embedded Systems and Paths Forward: Mixed-criticality, Energy, Reliability and Security Perspectives: Special Session Paper. 2021 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS). :1–10.
Modern embedded systems need to cater for several needs depending upon the application domain in which they are deployed. For example, mixed-critically needs to be considered for real-time and safety-critical systems and energy for battery-operated systems. At the same time, many of these systems demand for their reliability and security as well. With electronic systems being used for increasingly varying type of applications, novel challenges have emerged. For example, with the use of embedded systems in increasingly complex applications that execute tasks with varying priorities, mixed-criticality systems present unique challenges to designing reliable systems. The large design space involved in implementing cross-layer reliability in heterogeneous systems, particularly for mixed-critical systems, poses new research problems. Further, malicious security attacks on these systems pose additional extraordinary challenges in the system design. In this paper, we cover both the industry and academia perspectives of the challenges posed by these emergent aspects of system design towards designing highperformance, energy-efficient, reliable and/or secure embedded systems. We also provide our views on paths forward.
2021-04-27
Agirre, I., Onaindia, P., Poggi, T., Yarza, I., Cazorla, F. J., Kosmidis, L., Grüttner, K., Abuteir, M., Loewe, J., Orbegozo, J. M. et al..  2020.  UP2DATE: Safe and secure over-the-air software updates on high-performance mixed-criticality systems. 2020 23rd Euromicro Conference on Digital System Design (DSD). :344–351.
Following the same trend of consumer electronics, safety-critical industries are starting to adopt Over-The-Air Software Updates (OTASU) on their embedded systems. The motivation behind this trend is twofold. On the one hand, OTASU offer several benefits to the product makers and users by improving or adding new functionality and services to the product without a complete redesign. On the other hand, the increasing connectivity trend makes OTASU a crucial cyber-security demand to download latest security patches. However, the application of OTASU in the safety-critical domain is not free of challenges, specially when considering the dramatic increase of software complexity and the resulting high computing performance demands. This is the mission of UP2DATE, a recently launched project funded within the European H2020 programme focused on new software update architectures for heterogeneous high-performance mixed-criticality systems. This paper gives an overview of UP2DATE and its foundations, which seeks to improve existing OTASU solutions by considering safety, security and availability from the ground up in an architecture that builds around composability and modularity.