Visible to the public Biblio

Filters: Keyword is Device Identification  [Clear All Filters]
2022-10-20
Nassar, Reem, Elhajj, Imad, Kayssi, Ayman, Salam, Samer.  2021.  Identifying NAT Devices to Detect Shadow IT: A Machine Learning Approach. 2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA). :1—7.
Network Address Translation (NAT) is an address remapping technique placed at the borders of stub domains. It is present in almost all routers and CPEs. Most NAT devices implement Port Address Translation (PAT), which allows the mapping of multiple private IP addresses to one public IP address. Based on port number information, PAT matches the incoming traffic to the corresponding "hidden" client. In an enterprise context, and with the proliferation of unauthorized wired and wireless NAT routers, NAT can be used for re-distributing an Intranet or Internet connection or for deploying hidden devices that are not visible to the enterprise IT or under its oversight, thus causing a problem known as shadow IT. Thus, it is important to detect NAT devices in an intranet to prevent this particular problem. Previous methods in identifying NAT behavior were based on features extracted from traffic traces per flow. In this paper, we propose a method to identify NAT devices using a machine learning approach from aggregated flow features. The approach uses multiple statistical features in addition to source and destination IPs and port numbers, extracted from passively collected traffic data. We also use aggregated features extracted within multiple window sizes and feed them to a machine learning classifier to study the effect of timing on NAT detection. Our approach works completely passively and achieves an accuracy of 96.9% when all features are utilized.
2021-05-03
Zhu, Fangzhou, Liu, Liang, Meng, Weizhi, Lv, Ting, Hu, Simin, Ye, Renjun.  2020.  SCAFFISD: A Scalable Framework for Fine-Grained Identification and Security Detection of Wireless Routers. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1194–1199.

The security of wireless network devices has received widespread attention, but most existing schemes cannot achieve fine-grained device identification. In practice, the security vulnerabilities of a device are heavily depending on its model and firmware version. Motivated by this issue, we propose a universal, extensible and device-independent framework called SCAFFISD, which can provide fine-grained identification of wireless routers. It can generate access rules to extract effective information from the router admin page automatically and perform quick scans for known device vulnerabilities. Meanwhile, SCAFFISD can identify rogue access points (APs) in combination with existing detection methods, with the purpose of performing a comprehensive security assessment of wireless networks. We implement the prototype of SCAFFISD and verify its effectiveness through security scans of actual products.