Visible to the public Biblio

Filters: Keyword is Binary Code Search  [Clear All Filters]
2021-05-18
Tai, Zeming, Washizaki, Hironori, Fukazawa, Yoshiaki, Fujimatsu, Yurie, Kanai, Jun.  2020.  Binary Similarity Analysis for Vulnerability Detection. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1121–1122.
Binary similarity has been widely used in function recognition and vulnerability detection. How to define a proper similarity is the key element in implementing a fast detection method. We proposed a scalable method to detect binary vulnerabilities based on similarity. Procedures lifted from binaries are divided into several comparable strands by data dependency, and those strands are transformed into a normalized form by our tool named VulneraBin, so that similarity can be determined between two procedures through a hash value comparison. The low computational complexity allows semantically equivalent code to be identified in binaries compiled from million lines of source code in a fast and accurate way.
2021-05-05
Zhang, Yunan, Xu, Aidong Xu, Jiang, Yixin.  2020.  Scalable and Accurate Binary Code Search Method Based on Simhash and Partial Trace. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :818—826.

Binary code search has received much attention recently due to its impactful applications, e.g., plagiarism detection, malware detection and software vulnerability auditing. However, developing an effective binary code search tool is challenging due to the gigantic syntax and structural differences in binaries resulted from different compilers, compiler options and malware family. In this paper, we propose a scalable and accurate binary search engine which performs syntactic matching by combining a set of key techniques to address the challenges above. The key contribution is binary code searching technique which combined function filtering and partial trace method to match the function code relatively quick and accurate. In addition, a simhash and basic information based function filtering is proposed to dramatically reduce the irrelevant target functions. Besides, we introduce a partial trace method for matching the shortlisted function accurately. The experimental results show that our method can find similar functions, even with the presence of program structure distortion, in a scalable manner.