Biblio
Filters: Keyword is security-reliability tradeoff [Clear All Filters]
Security and Reliability Performance Analysis for URLLC With Randomly Distributed Eavesdroppers. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). :1—6.
.
2021. This paper for the first time investigate the security and reliability performance of ultra-reliable low-latency communication (URLLC) systems in the presence of randomly distributed eavesdroppers, where the impact of short blocklength codes and imperfect channel estimation are jointly considered. Based on the finite-blocklength information theory, we first derive a closed-form approximation of transmission error probability to describe the degree of reliability loss. Then, we also derive an asymptotic expression of intercept probability to characterize the security performance, where the impact of secrecy protected zone is also considered. Simulation and numerical results validate the accuracy of theoretical approximations, and illustrate the tradeoff between security and reliability. That is, the intercept probability of URLLC systems can be suppressed by loosening the reliability requirement, and vice versa. More importantly, the theoretical analysis and methodologies presented in this paper can offer some insights and design guidelines for supporting secure URLLC applications in the future 6G wireless networks.
Prediction of Optimal Power Allocation for Enhancing Security-Reliability Tradeoff with the Application of Artificial Neural Networks. 2020 2nd International Conference on Advances in Computer Technology, Information Science and Communications (CTISC). :40–45.
.
2020. In this paper, we propose a power allocation scheme in order to improve both secure and reliable performance in the wireless two-hop threshold-selection decode-and-forward (DF) relaying networks, which is so crucial to set a threshold value related the signal-to-noise ratio (SNR) of the source signal at relay nodes for perfect decoding. We adapt the maximal-ratio combining (MRC) receiving SNR from the direct and relaying paths both at the destination and at the eavesdropper. Particularly worth mentioning is that the closed expression form of outage probability and intercept probability is driven, which can quantify the security and reliability, respectively. We also make endeavors to utilize a metric to tradeoff the security and the reliability (SRT) and find out the relevance between them in the balanced case. But beyond that, in the pursuit of tradeoff performance, power allocation tends to depend on the threshold value. In other words, it provides a new method optimizing total power to the source and the relay by the threshold value. The results are obtained from analysis, confirmed by simulation, and predicted by artificial neural networks (ANNs), which is trained with back propagation (BP) algorithm, and thus the feasibility of the proposed method is verified.