Biblio
Filters: Keyword is Attention [Clear All Filters]
Facial Expression Recognition with Attention Mechanism. 2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). :1—6.
.
2021. With the development of artificial intelligence, facial expression recognition (FER) has greatly improved performance in deep learning, but there is still a lot of room for improvement in the study of combining attention to focus the network on key parts of the face. For facial expression recognition, this paper designs a network model, which use spatial transformer network to transform the input image firstly, and then adding channel attention and spatial attention to the convolutional network. In addition, in this paper, the GELU activation function is used in the convolutional network, which improves the recognition rate of facial expressions to a certain extent.
Few-Shot Learning of Signal Modulation Recognition Based on Attention Relation Network. 2020 28th European Signal Processing Conference (EUSIPCO). :1372–1376.
.
2021. Most of existing signal modulation recognition methods attempt to establish a machine learning mechanism by training with a large number of annotated samples, which is hardly applied to the real-world electronic reconnaissance scenario where only a few samples can be intercepted in advance. Few-Shot Learning (FSL) aims to learn from training classes with a lot of samples and transform the knowledge to support classes with only a few samples, thus realizing model generalization. In this paper, a novel FSL framework called Attention Relation Network (ARN) is proposed, which introduces channel and spatial attention respectively to learn a more effective feature representation of support samples. The experimental results show that the proposed method can achieve excellent performance for fine-grained signal modulation recognition even with only one support sample and is robust to low signal-to-noise-ratio conditions.
Attention-based Sequential Generative Conversational Agent. 2020 5th International Conference on Computing, Communication and Security (ICCCS). :1–6.
.
2020. In this work, we examine the method of enabling computers to understand human interaction by constructing a generative conversational agent. An experimental approach in trying to apply the techniques of natural language processing using recurrent neural networks (RNNs) to emulate the concept of textual entailment or human reasoning is presented. To achieve this functionality, our experiment involves developing an integrated Long Short-Term Memory cell neural network (LSTM) system enhanced with an attention mechanism. The results achieved by the model are shown in terms of the number of epochs versus loss graphs as well as a brief illustration of the model's conversational capabilities.
CAMTA: Causal Attention Model for Multi-touch Attribution. 2020 International Conference on Data Mining Workshops (ICDMW). :79–86.
.
2020. Advertising channels have evolved from conventional print media, billboards and radio-advertising to online digital advertising (ad), where the users are exposed to a sequence of ad campaigns via social networks, display ads, search etc. While advertisers revisit the design of ad campaigns to concurrently serve the requirements emerging out of new ad channels, it is also critical for advertisers to estimate the contribution from touch-points (view, clicks, converts) on different channels, based on the sequence of customer actions. This process of contribution measurement is often referred to as multi-touch attribution (MTA). In this work, we propose CAMTA, a novel deep recurrent neural network architecture which is a causal attribution mechanism for user-personalised MTA in the context of observational data. CAMTA minimizes the selection bias in channel assignment across time-steps and touchpoints. Furthermore, it utilizes the users' pre-conversion actions in a principled way in order to predict per-channel attribution. To quantitatively benchmark the proposed MTA model, we employ the real-world Criteo dataset and demonstrate the superior performance of CAMTA with respect to prediction accuracy as compared to several baselines. In addition, we provide results for budget allocation and user-behaviour modeling on the predicted channel attribution.