Visible to the public Biblio

Filters: Keyword is ML algorithms  [Clear All Filters]
2020-08-13
Sadeghi, Koosha, Banerjee, Ayan, Gupta, Sandeep K. S..  2019.  An Analytical Framework for Security-Tuning of Artificial Intelligence Applications Under Attack. 2019 IEEE International Conference On Artificial Intelligence Testing (AITest). :111—118.
Machine Learning (ML) algorithms, as the core technology in Artificial Intelligence (AI) applications, such as self-driving vehicles, make important decisions by performing a variety of data classification or prediction tasks. Attacks on data or algorithms in AI applications can lead to misclassification or misprediction, which can fail the applications. For each dataset separately, the parameters of ML algorithms should be tuned to reach a desirable classification or prediction accuracy. Typically, ML experts tune the parameters empirically, which can be time consuming and does not guarantee the optimal result. To this end, some research suggests an analytical approach to tune the ML parameters for maximum accuracy. However, none of the works consider the ML performance under attack in their tuning process. This paper proposes an analytical framework for tuning the ML parameters to be secure against attacks, while keeping its accuracy high. The framework finds the optimal set of parameters by defining a novel objective function, which takes into account the test results of both ML accuracy and its security against attacks. For validating the framework, an AI application is implemented to recognize whether a subject's eyes are open or closed, by applying k-Nearest Neighbors (kNN) algorithm on her Electroencephalogram (EEG) signals. In this application, the number of neighbors (k) and the distance metric type, as the two main parameters of kNN, are chosen for tuning. The input data perturbation attack, as one of the most common attacks on ML algorithms, is used for testing the security of the application. Exhaustive search approach is used to solve the optimization problem. The experiment results show k = 43 and cosine distance metric is the optimal configuration of kNN for the EEG dataset, which leads to 83.75% classification accuracy and reduces the attack success rate to 5.21%.
2020-02-17
Hao, Lina, Ng, Bryan.  2019.  Self-Healing Solutions for Wi-Fi Networks to Provide Seamless Handover. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :639–642.
The dynamic nature of the wireless channel poses a challenge to services requiring seamless and uniform network quality of service (QoS). Self-healing, a promising approach under the self-organizing networks (SON) paradigm, and has been shown to deal with unexpected network faults in cellular networks. In this paper, we use simple machine learning (ML) algorithms inspired by SON developments in cellular networks. Evaluation results show that the proposed approach identifies the faulty APs. Our proposed approach improves throughput by 63.6% and reduces packet loss rate by 16.6% compared with standard 802.11.
2018-06-07
Uwagbole, S. O., Buchanan, W. J., Fan, L..  2017.  An applied pattern-driven corpus to predictive analytics in mitigating SQL injection attack. 2017 Seventh International Conference on Emerging Security Technologies (EST). :12–17.

Emerging computing relies heavily on secure backend storage for the massive size of big data originating from the Internet of Things (IoT) smart devices to the Cloud-hosted web applications. Structured Query Language (SQL) Injection Attack (SQLIA) remains an intruder's exploit of choice to pilfer confidential data from the back-end database with damaging ramifications. The existing approaches were all before the new emerging computing in the context of the Internet big data mining and as such will lack the ability to cope with new signatures concealed in a large volume of web requests over time. Also, these existing approaches were strings lookup approaches aimed at on-premise application domain boundary, not applicable to roaming Cloud-hosted services' edge Software-Defined Network (SDN) to application endpoints with large web request hits. Using a Machine Learning (ML) approach provides scalable big data mining for SQLIA detection and prevention. Unfortunately, the absence of corpus to train a classifier is an issue well known in SQLIA research in applying Artificial Intelligence (AI) techniques. This paper presents an application context pattern-driven corpus to train a supervised learning model. The model is trained with ML algorithms of Two-Class Support Vector Machine (TC SVM) and Two-Class Logistic Regression (TC LR) implemented on Microsoft Azure Machine Learning (MAML) studio to mitigate SQLIA. This scheme presented here, then forms the subject of the empirical evaluation in Receiver Operating Characteristic (ROC) curve.

2014-09-17
Colbaugh, R., Glass, K..  2013.  Moving target defense for adaptive adversaries. Intelligence and Security Informatics (ISI), 2013 IEEE International Conference on. :50-55.

Machine learning (ML) plays a central role in the solution of many security problems, for example enabling malicious and innocent activities to be rapidly and accurately distinguished and appropriate actions to be taken. Unfortunately, a standard assumption in ML - that the training and test data are identically distributed - is typically violated in security applications, leading to degraded algorithm performance and reduced security. Previous research has attempted to address this challenge by developing ML algorithms which are either robust to differences between training and test data or are able to predict and account for these differences. This paper adopts a different approach, developing a class of moving target (MT) defenses that are difficult for adversaries to reverse-engineer, which in turn decreases the adversaries' ability to generate training/test data differences that benefit them. We leverage the coevolutionary relationship between attackers and defenders to derive a simple, flexible MT defense strategy which is optimal or nearly optimal for a broad range of security problems. Case studies involving two distinct cyber defense applications demonstrate that the proposed MT algorithm outperforms standard static methods, offering effective defense against intelligent, adaptive adversaries.