Visible to the public Biblio

Filters: Keyword is confinement loss  [Clear All Filters]
2021-06-01
Maswood, Mirza Mohd Shahriar, Uddin, Md Ashif, Dey, Uzzwal Kumar, Islam Mamun, Md Mainul, Akter, Moriom, Sonia, Shamima Sultana, Alharbi, Abdullah G..  2020.  A Novel Sensor Design to Sense Liquid Chemical Mixtures using Photonic Crystal Fiber to Achieve High Sensitivity and Low Confinement Losses. 2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0686—0691.
Chemical sensing is an important issue in food, water, environment, biomedical, and pharmaceutical field. Conventional methods used in laboratory for sensing the chemical are costly, time consuming, and sometimes wastes significant amount of sample. Photonic Crystal Fiber (PCF) offers high compactness and design flexibility and it can be used as biosensor, chemical sensor, liquid sensor, temperature sensor, mechanical sensor, gas sensor, and so on. In this work, we designed PCF to sense different concentrations of different liquids by one PCF structure. We designed different structure for silica cladding hexagonal PCF to sense different concentrations of benzene-toluene and ethanol-water mixer. Core diameter, air hole diameter, and air hole diameter to lattice pitch ratio are varied to get the optimal result as well to explore the effect of core size, air hole size and the pitch on liquid chemical sensing. Performance of the chemical sensors was examined based on confinement loss and sensitivity. The performance of the sensor varied a lot and basically it depends not only on refractive index of the liquid but also on sensing wavelengths. Our designed sensor can provide comparatively high sensitivity and low confinement loss.
Akand, Tawhida, Islam, Md Jahirul, Kaysir, Md Rejvi.  2020.  Low loss hollow core optical fibers combining lattice and negative curvature structures. 2020 IEEE Region 10 Symposium (TENSYMP). :698—701.
Negative curvature hollow core fibers (NC-HCFs) realize great research attention due to their comparatively low losses with simplified design and fabrication simplicity. Recently, revolver type fibers that combine the NC-HCF and conventional lattice structured photonic crystal fiber (PCF) have opened up a new era in communications due to their low loss, power confinement capacity, and multi-bandwidth applications. In this study, we present a customized optical fiber design that comprises the PCF with the NC-HCF to get lowest confinement loss. Extensive numerical simulations are performed and a noteworthy low loss of 4.47×10-05dB/m at a wavelength of 0.85 μm has been recorded for the designed fiber, which is almost 4600 times lower than annular revolver type fibers. In addition, a conspicuous low loss transmission bandwidth ranging from 0.6 μm to 1.8 μm has found in this study. This may have potential applications in spectroscopy, material processing, chemical and bio-molecular sensing, security, and industry applications.