Visible to the public Biblio

Filters: Keyword is Video segmentation  [Clear All Filters]
2022-05-10
Kumar, Chandan, Singh, Shailendra.  2021.  Asymmetric Encryption of Surveillance Videos for Adaptive Threshold based Moving Object Detection. 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). :1–6.
The use of video surveillance (VS) has grown significantly using the internet as a platform. Thus security issues on such videos must be addressed. Video frames can have multiple objects and various features over video length. Moving object detection (MOD) and real-time tracking requires security strategies designed to protect videos. This paper is proposed to design an asymmetric encryption method (RSA). The paper has contributed in two stages. In the first phase the fast video segmentation method based on a global variable threshold is designed to facilitate MOD. Later in second pass the RSA-based encryption is used to maintain the efficiency of the object detection. The secure key generation method is demonstrated. The performances of two global thresholds are demonstrated and compared under the encrypted video data. It is found that that method is very effective in finding objects under the context of video surveillance in real time.
2017-03-07
Kannao, Raghvendra, Guha, Prithwijit.  2016.  Generic TV Advertisement Detection Using Progressively Balanced Perceptron Trees. Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing. :8:1–8:8.

Automatic detection of TV advertisements is of paramount importance for various media monitoring agencies. Existing works in this domain have mostly focused on news channels using news specific features. Most commercial products use near copy detection algorithms instead of generic advertisement classification. A generic detector needs to handle inter-class and intra-class imbalances present in data due to variability in content aired across channels and frequent repetition of advertisements. Imbalances present in data make classifiers biased towards one of the classes and thus require special treatment. We propose to use tree of perceptrons to solve this problem. The training data available for each perceptron node is balanced using cluster based over-sampling and TOMEK link cleaning as we traverse the tree downwards. The trained perceptron node then passes the original unbalanced data to its children. This process is repeated recursively till we reach the leaf nodes. We call this new algorithm as "Progressively Balanced Perceptron Tree". We have also contributed a TV advertisements dataset consisting of 250 hours of videos recorded from five non-news TV channels of different genres. Experimentations on this dataset have shown that the proposed approach has comparatively superior and balanced performance with respect to six baseline methods. Our proposal generalizes well across channels, with varying training data sizes and achieved a top F1-score of 97% in detecting advertisements.