Visible to the public Biblio

Filters: Keyword is Ultra reliable low latency communication  [Clear All Filters]
2022-12-02
Nihtilä, Timo, Berg, Heikki.  2022.  Energy Consumption of DECT-2020 NR Mesh Networks. 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit). :196—201.
ETSI DECT-2020 New Radio (NR) is a new flexible radio interface targeted to support a broad range of wireless Internet of Things (IoT) applications. Recent reports have shown that DECT-2020 NR achieves good delay performance and it has been shown to fulfill both massive machine-type communications (mMTC) and ultra-reliable low latency communications (URLLC) requirements for 5th generation (5G) networks. A unique aspect of DECT-2020 as a 5G technology is that it is an autonomous wireless mesh network (WMN) protocol where the devices construct and uphold the network independently without the need for base stations or core network architecture. Instead, DECT-2020 NR relies on part of the network devices taking the role of a router to relay data through the network. This makes deployment of a DECT-2020 NR network affordable and extremely easy, but due to the nature of the medium access protocol, the routing responsibility adds an additional energy consumption burden to the nodes, who in the IoT domain are likely to be equipped with a limited battery capacity. In this paper, we analyze by system level simulations the energy consumption of DECT-2020 NR networks with different network sizes and topologies and how the reported low latencies can be upheld given the energy constraints of IoT devices.
2022-07-01
Xie, Yuncong, Ren, Pinyi, Xu, Dongyang, Li, Qiang.  2021.  Security and Reliability Performance Analysis for URLLC With Randomly Distributed Eavesdroppers. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). :1—6.
This paper for the first time investigate the security and reliability performance of ultra-reliable low-latency communication (URLLC) systems in the presence of randomly distributed eavesdroppers, where the impact of short blocklength codes and imperfect channel estimation are jointly considered. Based on the finite-blocklength information theory, we first derive a closed-form approximation of transmission error probability to describe the degree of reliability loss. Then, we also derive an asymptotic expression of intercept probability to characterize the security performance, where the impact of secrecy protected zone is also considered. Simulation and numerical results validate the accuracy of theoretical approximations, and illustrate the tradeoff between security and reliability. That is, the intercept probability of URLLC systems can be suppressed by loosening the reliability requirement, and vice versa. More importantly, the theoretical analysis and methodologies presented in this paper can offer some insights and design guidelines for supporting secure URLLC applications in the future 6G wireless networks.
2022-03-23
Forssell, Henrik, Thobaben, Ragnar, Gross, James.  2021.  Delay Performance of Distributed Physical Layer Authentication Under Sybil Attacks. ICC 2021 - IEEE International Conference on Communications. :1—7.

Physical layer authentication (PLA) has recently been discussed in the context of URLLC due to its low complexity and low overhead. Nevertheless, these schemes also introduce additional sources of error through missed detections and false alarms. The trade-offs of these characteristics are strongly dependent on the deployment scenario as well as the processing architecture. Thus, considering a feature-based PLA scheme utilizing channel-state information at multiple distributed radio-heads, we study these trade-offs analytically. We model and analyze different scenarios of centralized and decentralized decision-making and decoding, as well as the impacts of a single-antenna attacker launching a Sybil attack. Based on stochastic network calculus, we provide worst-case performance bounds on the system-level delay for the considered distributed scenarios under a Sybil attack. Results show that the arrival-rate capacity for a given latency deadline is increased for the distributed scenarios. For a clustered sensor deployment, we find that the distributed approach provides 23% higher capacity when compared to the centralized scenario.

2021-06-30
Čečil, Roman, Šetka, Vlastimil, Tolar, David, Sikora, Axel.  2020.  RETIS – Real-Time Sensitive Wireless Communication Solution for Industrial Control Applications. 2020 IEEE 5th International Symposium on Smart and Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS). :1—9.
Ultra-Reliable Low Latency Communications (URLLC) has been always a vital component of many industrial applications. The paper proposes a new wireless URLLC solution called RETIS, which is suitable for factory automation and fast process control applications, where low latency, low jitter, and high data exchange rates are mandatory. In the paper, we describe the communication protocol as well as the hardware structure of the network nodes for implementing the required functionality. Many techniques enabling fast, reliable wireless transmissions are used - short Transmission Time Interval (TTI), TimeDivision Multiple Access (TDMA), MIMO, optional duplicated data transfer, Forward Error Correction (FEC), ACK mechanism. Preliminary tests show that reliable endto-end latency down to 350 μs and packet exchange rate up to 4 kHz can be reached (using quadruple MIMO and standard IEEE 802.15.4 PHY at 250 kbit/s).