Biblio
While cloud computing has become an attractive platform for supporting data intensive applications, a major obstacle to the adoption of cloud computing in sectors such as health and defense is the privacy risk associated with releasing datasets to third-parties in the cloud for analysis. A widely-adopted technique for data privacy preservation is to anonymize data via local recoding. However, most existing local-recoding techniques are either serial or distributed without directly optimizing scalability, thus rendering them unsuitable for big data applications. In this paper, we propose a highly scalable approach to local-recoding anonymization in cloud computing, based on Locality Sensitive Hashing (LSH). Specifically, a novel semantic distance metric is presented for use with LSH to measure the similarity between two data records. Then, LSH with the MinHash function family can be employed to divide datasets into multiple partitions for use with MapReduce to parallelize computation while preserving similarity. By using our efficient LSH-based scheme, we can anonymize each partition through the use of a recursive agglomerative \$k\$-member clustering algorithm. Extensive experiments on real-life datasets show that our approach significantly improves the scalability and time-efficiency of local-recoding anonymization by orders of magnitude over existing approaches.
While attacks on information systems have for most practical purposes binary outcomes (information was manipulated/eavesdropped, or not), attacks manipulating the sensor or control signals of Industrial Control Systems (ICS) can be tuned by the attacker to cause a continuous spectrum in damages. Attackers that want to remain undetected can attempt to hide their manipulation of the system by following closely the expected behavior of the system, while injecting just enough false information at each time step to achieve their goals. In this work, we study if attack-detection can limit the impact of such stealthy attacks. We start with a comprehensive review of related work on attack detection schemes in the security and control systems community. We then show that many of those works use detection schemes that are not limiting the impact of stealthy attacks. We propose a new metric to measure the impact of stealthy attacks and how they relate to our selection on an upper bound on false alarms. We finally show that the impact of such attacks can be mitigated in several cases by the proper combination and configuration of detection schemes. We demonstrate the effectiveness of our algorithms through simulations and experiments using real ICS testbeds and real ICS systems.
Proactive security review and test efforts are a necessary component of the software development lifecycle. Since resource limitations often preclude reviewing, testing and fortifying the entire code base, prioritizing what code to review/test can improve a team's ability to find and remove more vulnerabilities that are reachable by an attacker. One way that professionals perform this prioritization is the identification of the attack surface of software systems. However, identifying the attack surface of a software system is non-trivial. The goal of this poster is to present the concept of a risk-based attack surface approximation based on crash dump stack traces for the prioritization of security code rework efforts. For this poster, we will present results from previous efforts in the attack surface approximation space, including studies on its effectiveness in approximating security relevant code for Windows and Firefox. We will also discuss future research directions for attack surface approximation, including discovery of additional metrics from stack traces and determining how many stack traces are required for a good approximation.
Given a history of detected malware attacks, can we predict the number of malware infections in a country? Can we do this for different malware and countries? This is an important question which has numerous implications for cyber security, right from designing better anti-virus software, to designing and implementing targeted patches to more accurately measuring the economic impact of breaches. This problem is compounded by the fact that, as externals, we can only detect a fraction of actual malware infections. In this paper we address this problem using data from Symantec covering more than 1.4 million hosts and 50 malware spread across 2 years and multiple countries. We first carefully design domain-based features from both malware and machine-hosts perspectives. Secondly, inspired by epidemiological and information diffusion models, we design a novel temporal non-linear model for malware spread and detection. Finally we present ESM, an ensemble-based approach which combines both these methods to construct a more accurate algorithm. Using extensive experiments spanning multiple malware and countries, we show that ESM can effectively predict malware infection ratios over time (both the actual number and trend) upto 4 times better compared to several baselines on various metrics. Furthermore, ESM's performance is stable and robust even when the number of detected infections is low.
Security requirements around software systems have become more stringent as society becomes more interconnected via the Internet. New ways of prioritizing security efforts are needed so security professionals can use their time effectively to find security vulnerabilities or prevent them from occurring in the first place. The goal of this work is to help software development teams prioritize security efforts by approximating the attack surface of a software system via stack trace analysis. Automated attack surface approximation is a technique that uses crash dump stack traces to predict what code may contain exploitable vulnerabilities. If a code entity (a binary, file or function) appears on stack traces, then Attack Surface Approximation (ASA) considers that code entity is on the attack surface of the software system. We also explore whether number of appearances of code on stack traces correlates with where security vulnerabilities are found. To date, feasibility studies of ASA have been performed on Windows 8 and 8.1, and Mozilla Firefox. The results from these studies indicate that ASA may be useful for practitioners trying to secure their software systems. We are now working towards establishing the ground truth of what the attack surface of software systems is, along with looking at how ASA could change over time, among other metrics.
The threat of DDOS and other cyberattacks has increased during the last decade. In addition to the radical increase in the number of attacks, they are also becoming more sophisticated with the targets ranging from ordinary users to service providers and even critical infrastructure. According to some resources, the sophistication of attacks is increasing faster than the mitigating actions against them. For example determining the location of the attack origin is becoming impossible as cyber attackers employ specific means to evade detection of the attack origin by default, such as using proxy services and source address spoofing. The purpose of this paper is to initiate discussion about effective Internet Protocol traceback mechanisms that are needed to overcome this problem. We propose an approach for traceback that is based on extensive use of security metrics before (proactive) and during (reactive) the attacks.
In this paper, we describe the results of several experiments designed to test two dynamic network moving target defenses against a propagating data exfiltration attack. We designed a collection of metrics to assess the costs to mission activities and the benefits in the face of attacks and evaluated the impacts of the moving target defenses in both areas. Experiments leveraged Siege's Cyber-Quantification Framework to automatically provision the networks used in the experiment, install the two moving target defenses, collect data, and analyze the results. We identify areas in which the costs and benefits of the two moving target defenses differ, and note some of their unique performance characteristics.
Most cyber network attacks begin with an adversary gaining a foothold within the network and proceed with lateral movement until a desired goal is achieved. The mechanism by which lateral movement occurs varies but the basic signature of hopping between hosts by exploiting vulnerabilities is the same. Because of the nature of the vulnerabilities typically exploited, lateral movement is very difficult to detect and defend against. In this paper we define a dynamic reachability graph model of the network to discover possible paths that an adversary could take using different vulnerabilities, and how those paths evolve over time. We use this reachability graph to develop dynamic machine-level and network-level impact scores. Lateral movement mitigation strategies which make use of our impact scores are also discussed, and we detail an example using a freely available data set.
When reasoning about software security, researchers and practitioners use the phrase ``attack surface'' as a metaphor for risk. Enumerate and minimize the ways attackers can break in then risk is reduced and the system is better protected, the metaphor says. But software systems are much more complicated than their surfaces. We propose function- and file-level attack surface metrics–-proximity and risky walk–-that enable fine-grained risk assessment. Our risky walk metric is highly configurable: we use PageRank on a probability-weighted call graph to simulate attacker behavior of finding or exploiting a vulnerability. We provide evidence-based guidance for deploying these metrics, including an extensive parameter tuning study. We conducted an empirical study on two large open source projects, FFmpeg and Wireshark, to investigate the potential correlation between our metrics and historical post-release vulnerabilities. We found our metrics to be statistically significantly associated with vulnerable functions/files with a small-to-large Cohen's d effect size. Our prediction model achieved an increase of 36% (in FFmpeg) and 27% (in Wireshark) in the average value of F-measure over a base model built with SLOC and coupling metrics. Our prediction model outperformed comparable models from prior literature with notable improvements: 58% reduction in false negative rate, 81% reduction in false positive rate, and 548% increase in F-measure. These metrics advance vulnerability prevention by [(a)] being flexible in terms of granularity, performing better than vulnerability prediction literature, and being tunable so that practitioners can tailor the metrics to their products and better assess security risk.
The success or failure of a mobile application (`app') is largely determined by user ratings. Users frequently make their app choices based on the ratings of apps in comparison with similar, often competing apps. Users also expect apps to continually provide new features while maintaining quality, or the ratings drop. At the same time apps must also be secure, but is there a historical trade-off between security and ratings? Or are app store ratings a more all-encompassing measure of product maturity? We used static analysis tools to collect security-related metrics in 38,466 Android apps from the Google Play store. We compared the rate of an app's permission misuse, number of requested permissions, and Androrisk score, against its user rating. We found that high-rated apps have statistically significantly higher security risk metrics than low-rated apps. However, the correlations are weak. This result supports the conventional wisdom that users are not factoring security risks into their ratings in a meaningful way. This could be due to several reasons including users not placing much emphasis on security, or that the typical user is unable to gauge the security risk level of the apps they use everyday.
Android malware is becoming very effective in evading detection techniques, and traditional malware detection techniques are demonstrating their weaknesses. Signature based detection shows at least two drawbacks: first, the detection is possible only after the malware has been identified, and the time needed to produce and distribute the signature provides attackers with window of opportunities for spreading the malware in the wild. For solving this problem, different approaches that try to characterize the malicious behavior through the invoked system and API calls emerged. Unfortunately, several evasion techniques have proven effective to evade detection based on system and API calls. In this paper, we propose an approach for capturing the malicious behavior in terms of device resource consumption (using a thorough set of features), which is much more difficult to camouflage. We describe a procedure, and the corresponding practical setting, for extracting those features with the aim of maximizing their discriminative power. Finally, we describe the promising results we obtained experimenting on more than 2000 applications, on which our approach exhibited an accuracy greater than 99%.
One of the important direction of research in situational awareness is implementation of visual analytics techniques which can be efficiently applied when working with big security data in critical operational domains. The paper considers a visual analytics technique for displaying a set of security metrics used to assess overall network security status and evaluate the efficiency of protection mechanisms. The technique can assist in solving such security tasks which are important for security information and event management (SIEM) systems. The approach suggested is suitable for displaying security metrics of large networks and support historical analysis of the data. To demonstrate and evaluate the usefulness of the proposed technique we implemented a use case corresponding to the Olympic Games scenario.
- « first
- ‹ previous
- 1
- 2
- 3